NOAA Technical Memorandum NMFS **JULY 1988** REPORT OF A MARINE MAMMAL SURVEY OF THE EASTERN TROPICAL PACIFIC ABOARD THE RESEARCH VESSEL David Starr Jordan, AUGUST 8-DECEMBER 10, 1987 Rennie S. Holt Stephanie N. Sexton NOAA-TM-NMFS-SWFC-117 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Center ### NOAA Technical Memorandum NMFS The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS). In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature. # NOAA Technical Memorandum NMFS This TM series is used for documentation and simply communication of preliminary results, interim reports, or special purpose information; and have not received complete formal review, editorial control, or detailed editing. **JULY 1988** # REPORT OF A MARINE MAMMAL SURVEY OF THE EASTERN TROPICAL PACIFIC ABOARD THE RESEARCH VESSEL David Starr Jordan, AUGUST 8-DECEMBER 10, 1987 Rennie S. Holt Stephanie N. Sexton Southwest Fisheries Center National Marine Fisheries Service, NOAA La Jolla, California 92038 NOAA-TM-NMFS-SWFC-117 U.S. DEPARTMENT OF COMMERCE c. William Verity, Jr., Secretary National Oceanic and Atmospheric Administration William E. Evans, Under Secretary for Oceans and Atmosphere National Marine Fisheries Service James W. Brennan, Assistant Administrator for Fisheries # CONTENTS | | Page | |--------------------------------|------| | List of Tables | ii | | List of Figures | iii | | Survey Objectives | . 1 | | Materials and Methods | 2 | | Study Area and Itinerary | 2 | | Scientific Personnel | 2 | | Marine Mammal Species Surveyed | 3 | | Equipment | . 3 | | Duty Stations | 4 | | Observer Teams and Rotation | 5 | | Data Collection Procedures | 5 | | Data Analyses | 7 | | Results | 7 | | Summary | 9 | | Acknowledgments | 9 | | Literature Cited | 10 | | Tables | 11 | | Figures | 119 | # LIST OF TABLES | | Page | |----------|--| | Table 1. | Sea state conditions measured by the Beaufort scale (from Bowditch, 1966) | | Table 2. | Daily searching effort recorded in the eastern tropical Pacific aboard the <u>David Starr Jordan</u> during August 8 through December 10, 1987 12 | | Table 3. | Marine mammal sightings, classified by species code groups, encountered in the eastern tropical Pacific during August 8 through December 10, 1987 60 | | Table 4. | Marine mammal school size estimates for each observer, classified by species codes, for all sightings encountered in the eastern tropical Pacific during August 8 through December 10, 1987 100 | | Table 5. | Summary of marine mammal sightings encountered in the eastern tropical Pacific during August 8 through December 10, 1987 | | Table 6. | Summary of distance searched, large dolphin schools detected, and rates of encountering dolphins by observers aboard the <u>Jordan</u> in the eastern tropical Pacific during August 8 through December 10, 1987 | # LIST OF FIGURES | | Page | |------------|--| | Figure 1. | Tracklines surveyed by the NOAA Ship <u>David</u> Starr <u>Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure 2. | Research ship marine mammal daily effort record 120 | | Figure 3. | Research ship marine mammal sighting record 121 | | Figure 4. | Vertical and horizontal sun position categories 122 | | Figure 5. | Research ship marine mammal sighting record continuation sheet 123 | | Figure 6. | Offshore (+), coastal (o) and unidentified (▽) spotted dolphins detected from aboard the NOAA Ship David Starr Jordan from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure 7. | Eastern (+), whitebelly (o) and unidentified (\nabla) spinner dolphins detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure 8. | Common dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure 9. | Striped dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure 10. | Bottlenose dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure 11 | . Risso's dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | | Figure | 12. | Rough-toothed dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | 130 | |--------|-----|--|-----| | Figure | 13. | Pilot whales (+) detected from aboard the NOAA Ship David Starr Jordan from August 8 through December 10, 1987, in the eastern tropical Pacific | 131 | | Figure | 14. | Sperm (+) and dwarf sperm (o) whales detected
from aboard the NOAA Ship <u>David Starr Jordan</u>
from August 8 through December 10, 1987, in the
eastern tropical Pacific | 132 | | Figure | 15. | Unidentified rorquals (+), Bryde's (o), blue (▽) and humpback (*) whales detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | 133 | | Figure | 16. | Unidentified beaked (+), Cuvier's beaked (o), mesoplodon (▽) and southern bottlenose (□) whales detected from aboard the NOAA Ship David Starr Jordan from August 8 through December 10, 1987, in the eastern tropical Pacific | 134 | | Figure | 17. | Killer (+) and false killer (o) whales, Fraser's dolphins (▽), pygmy killer (*) whales and Pacific white-sided (△) dolphins detected from aboard the NOAA Ship David Starr Jordan from August 8 through December 8, 1987, in the eastern tropical Pacific | 135 | | Figure | 18. | Unidentified dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific | 136 | | Figure | 19 | Unidentified small whales (+), unidentified whales (o), unidentified large whales (▽) and unidentified cetaceans (□) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern Tropical Pacific | 137 | # REPORT OF A MARINE MAMMAL SURVEY OF THE EASTERN TROPICAL PACIFIC ABOARD THE RESEARCH VESSEL <u>DAVID STARR JORDAN</u> AUGUST 8 - DECEMBER 10, 1987 Rennie S. Holt and Stephanie N. Sexton In 1984, as a result of an amendment to the Marine Mammal Protection Act of 1972, the National Marine Fisheries Service (NMFS) was mandated to conduct a research program to monitor trends in the abundance of stocks of dolphins in the eastern tropical Pacific (ETP). These dolphins are killed incidentally during fishing operations by the U. S. purse seine fishery for yellowfin tuna (Thunnus albacares). In 1986, the Southwest Fisheries Center (SWFC) of the NMFS initiated a five-year program to monitor these stocks of dolphins. In the first year of the program, two surveys of marine mammal populations in the ETP were conducted concurrently aboard the National Oceanic and Atmospheric Administration ships the <u>David Starr Jordan</u> and the <u>McArthur</u>. The surveys lasted 120 days. In 1987, we conducted the second two surveys during the same period of time and used the same ships. In this report, we describe the experimental procedures used during the surveys and we present summaries of the distance searched and marine mammals encountered from aboard the <u>David Starr Jordan</u> (Cruise 87-06 (210); SWFC Observer Cruise 1081). A separate report of the <u>McArthur</u> cruise has been published by Holt and Jackson (1988). A report of environmental data collected during the surveys is reported by Thayer et al. (1988). ## SURVEY OBJECTIVES The primary objective of the cruise was to collect information to calculate relative abundance of dolphin species in the ETP that are taken incidentally by the purse seine fishery for yellowfin tuna. Specific objectives were to collect information to: - estimate school density, school size, and species composition of each species taken by the fishery; - calibrate observers' estimates of dolphin school size with counts of school sizes obtained from photographs taken from a ship-based helicopter; - investigate the physical and biological environment of the affected species; and contribute to on-going U.S. and international programs investigating oceanography and ocean-atmosphere interactions in the ETP. ## MATERIALS AND METHODS # Study Area and Itinerary The <u>David Starr Jordan</u>, herein referred to as the <u>Jordan</u>,
traversed predetermined tracklines in the ETP from August 8 through December 10, 1987 (Figure 1), with port calls in San Jose, Guatemala; Manzanillo, Mexico and Panama City, Panama. The itinerary of the ship included four segments or effort legs: | Leg | 1.
Departed
Arrived | San Diego
San Jose | August 8, 1987
August 28, 1987 | |-----|---------------------------|---------------------------|---------------------------------------| | Leg | 2.
Departed
Arrived | San Jose
Panama City | September 2, 1987
October 1, 1987 | | Leg | 3.
Departed
Arrived | Panama City
Manzanillo | October 6, 1987
November 4, 1987 | | Leg | 4.
Departed
Arrived | Manzanillo
San Diego | November 9, 1987
December 10, 1987 | ## Scientific Personnel | Cruise Leaders | Legs | |----------------------------|------| | Jay Barlow, SWFC | 1 | | Doug DeMaster, SWFC | 2 | | Aleta Hohn, SWFC | 3 | | Elizabeth Vetter, SWFC | 4 | | Identification Specialists | | | Robert Pitman, SWFC | 1-2 | | Scott Sinclair, SWFC | 1-2 | | Richard LeDuc, SWFC | 3-4 | | Marc Webber, SWFC | 3-4 | | Observers | | | Sallie Beavers, SWFC | 1-2 | | Carrie Fried, SWFC | 1-2 | | William Irwin, SWFC | 1-2 | | Keith Rittmaster, SWFC
Scott Benson, SWFC
Carla Bisbee, SWFC
Joe Raffetto, SWFC
Dave Skordal, SWFC | 1-2
3-4
3-4
3-4
3-4 | |---|---| | Photogrammetry Specialists | | | Wayne Perryman, NOAA Corps, SWFC
Hannah Bernard, SWFC
Mark Lowry, SWFC
Morgan Lynn, NOAA Corps, SWFC | 1
2,4
3-4
1-3 | | Bird Survey and Oceanographic Specialists | | | Susan Chivers, SWFC Julie Ellingson, NOAA R/V McArthur Karen Bluth, Yale University John Gill, Yale University Larry O'Brien, SWFC Victoria Thayer, SWFC Gregg Thomas, Atl. Oceano. & Meter. Lab. | 1
3-4
2-3
2-3
4
1-2
1-4 | | Helicopter Support | | | Carl Anderson, OAO
John Crona, OAO
Dave Gardner, OAO
Don Winters, NOAA Corps, OAO | 1,2,4
3
2-3
1,4 | # Marine Mammal Species Surveyed During the survey, the observers recorded information on all species of whales and dolphins sighted throughout the cruise. However, encounter rates are presented only for dolphin species. # Equipment The <u>Jordan</u>, commissioned in 1964, is 52.1 m in length and 11.2 m in breadth, and has a 3.8 m draft. During the survey, the vessel maintained a cruising speed of approximately 18.5 km/hr. Several pieces of equipment were used to gather data. The geographic position of the vessel was recorded periodically and at the time of a marine mammal sighting using the ship's Satellite Navigation System (SAT NAV). Marine mammals were detected using port and starboard pedestal mounted 25% Fuginon 1 ¹Reference to trade names does not imply endorsement by NMFS binoculars and a variety of hand-held 7-15X binoculars. The 25X glasses were mounted on the upper deck approximately 10.7 m above the sea surface. Surface temperature and salinity, fluorescence (chlorophyll), and temperature-depth profiles were obtained using a thermosalinograph, fluorometer, and expendable bathythermograph (XBT), respectively. Discrete conductivity and temperature-depth profiles were also obtained using conductivity-temperature-depth (CTD) probes. The bearing and radial distances of marine mammals from the ship were calculated using two methods. First, the Computer Assisted Sighting Technology (CAST) system used information from several sensors to measure sighting angles and then to calculate radial distances. A CAMAC1 computer collected data from various sources: the ship's course from the gyroscope; the electronically encoded sighting angles of the 25% binoculars; a measurement of the relative motion of the ship from a pitch-roll sensor; speed from the speed log (when it was functional); and information concerning survey status, such as identification of observers occupying survey positions from data pads located on the flying bridge. An IBM-compatible computer, which was interfaced with the CAMAC, was then used to process information to determine the sighting angle to the cue. Successive sighting angles, recorded as the ship traveled along the trackline, were used to calculate Analyses of CAST data will be presented in a radial distances. The second method was the use of estimates of separate report. the bearing and radial distance of a school from the ship, which were recorded by the observers using a 3600 graduated washer attached to the base of the 25% binoculars and graduated reticles enclosed in the right eye piece of the binoculars. A 35 mm F-1 Canon¹ camera with motor drive was used to photograph animals to aid in stock and species identification. The system included 400 mm, 75-210 mm zoom, and 28 mm lens. Some observers also used film supplied by the SWFC in personal camera equipment to photograph sightings. Animals were also recorded on 1.27 cm video tape using a Panasonic¹ VHS recorder and a Panasonic¹ camera equipped with telephoto lens. # Duty Stations Three duty stations were used during the survey, with observers rotating through each station. Left Binocular - The port-side observer used a 25% binocular, mounted on the port side of the ship to scan the ocean for marine mammal sighting cues. The major area of responsibility for this observer was from the midpoint of the trackline to abeam the port-side of the vessel and outward to the horizon or to the extent possible with prevailing environmental conditions. - 2. Right Binocular The starboard observer used a 25X binocular, mounted on the starboard side of the ship, to search from the midpoint of the trackline to abeam the right side of the ship; and outward to the horizon or to the extent possible with prevailing environmental conditions. Observers in the left and right positions frequently searched areas on the opposite side of the tracklines. - 3. Recorder The recorder's duties were to transcribe transect effort data at regular intervals, to make notes of information pertaining to each sighting, and, when possible, to search the trackline adjacent to the ship with hand held binoculars for schools not detected by the observers on the 25X glasses. ### Observer Teams and Rotation Two teams of three observers each alternately occupied the three duty stations. Each team was on duty for 2-hour shifts. During each shift members spent approximately equal time occupying each duty station. Two of the six observers were experts in identifying marine mammals. These two identification specialists were assigned to separate teams so that one would always be on duty. Two of the other four observers were assigned to each team. Team members remained constant during the entire survey. Team members rotated among the duty stations and teams rotated on and off duty without interrupting searching effort. Teams alternated completing the first watch of the day. Observers aboard the <u>Jordan</u> and <u>McArthur</u> changed vessels after leg 2. # Data Collection Procedures A typical day's searching activity began at sunrise, approximately 0630 hours local time, and ended at sunset, approximately 1830 hours local time. The searching procedure was initiated when observers were occupying the duty stations and a recorder was in place to record information on the Research Vessel Effort Form (Figure 2). The ship traversed a predetermined trackline at a constant speed of approximately 18.5 km/hr. Except for approximately 2 to 3 hours per night when oceanographic data were collected, the ship maintained its speed and course between sunset and sunrise to provide wider spatial distribution of searching effort. When a sighting cue (marine mammals, birds, splashes, etc.) was detected, it was determined if the cue was a marine mammal and if the cue was appropriate for tracking using the CAST system. Schools that were not tracked included whales, dolphins detected close to the vessel or at distances greater than 5.6 km lateral to the vessel, small schools of dolphins (<15 animals), and schools detected during poor sighting conditions. tracking was appropriate, the searching effort was terminated and the observer began tracking by turning on a switch attached to the binocular stand. With the ship still on course and with the school in the field of view of the binoculars, the CAST system recorded successive bearings of the animals to the ship. After approximately 8 minutes the ship was directed towards the cue and the tracking continued for another 8 minutes. When the target was not in the field of view, the switch was deactivated until the target was again sighted. At the end of the tracking sequence, if the target was lost from view and not resighted, or if the cue was not a marine mammal, the tracking procedure was terminated. All marine mammal schools were approached to obtain estimates of school size and species composition. The searching mode was resumed when the vessel returned to course and speed and the observers resumed searching for other sighting cues. During each marine mammal sighting, the recorder collected data to complete Research Vessel Effort and Research Vessel Sighting (Figure 3) forms. Definition of each data element is given by Ralston (1984). Criteria for assigning sun position and sea state conditions are given in Figure 4 and Table 1, respectively. Observers recorded bearing and range for schools using the 360° washer and reticle increments. The reticle measurements were converted to km using a = 0.003942 tan (arctan (45242.52) - 0.001088 r), where a equals radial distance in km and r denotes the number of reticles below the topmost reticle. Values in this equation were calculated by Barlow (per. comm.) using an equation presented by Smith (1982) and data collected during a previous research vessel
cruise and the present ETP cruise. Each observer who had a good view of the school independently recorded in their logbook an estimate of school size and a determination of species composition. All available observers determined species identification and animal behavior, and a consensus was entered on the Research Vessel Sighting and Research Vessel Continuation (Figure 5) Forms at the time of a sighting. Species identifications were validated when possible by photographing the school at close range using 35 mm and video cameras. During suitable sea states (Beaufort states 0 - 4) and visibility conditions, a Hughes 500D helicopter was used to photograph dolphin schools. The photographs will be used to ²Ralston, F. Ms. Usage procedures and coding notes for research vessel sighting and effort records. Southwest Fisheries Center, P. O. Box 271, La Jolla, CA 92038. calibrate dolphin school size estimates made by shipboard observers. We used high resolution 5" format cameras with image motion compensation, which were designed by the Navy for low altitude reconnaissance. The cameras were forward motion compensated to eliminate loss of resolution caused by the movement of the aircraft. Analyses of the aerial photography data will be reported by Barlow et al. (In prep). # Data Analyses Data were recorded for each Beaufort sea state and then grouped into (1) "calm" sea state conditions without whitecaps (Beaufort numbers 0-2) or (2) "rough" sea state conditions with whitecaps (Beaufort numbers 3-5). The presence of whitecaps was important in searching for sighting cues. Animal splashes could not be used as a sighting cue during rough seas because whitecaps were easily confused with the animal splashes. Visibility effects were investigated by classifying sun positions into "good" and "poor" categories defined by the effect of the glare from the sun on the trackline. Criteria used were those described in Holt (1987). Poor sun conditions were recorded only when horizontal sun position was 12 and vertical position was 1, 2, or 3 or when there were clouds together with fog or rain. All other conditions were good conditions. The rate of encountering marine mammal schools was determined as the simple ratio of sightings detected per 1000 km searched. The standard error of the encounter rate was calculated as $$Var (n/L) = [\sum l_{i}[(n_{i}/l_{i}) - (n/L)]^{2}]/L(R - 1)$$ where n equals the number of dolphin schools detected in the survey, L equals the km searched, l_i equals km searched during the ith day, n_i equals schools detected during the ith day, and R equals number of days searched. Encounter rates were calculated only for all dolphin schools containing at least 15 animals that were detected during Beaufort states 0 through 5 (elimination of Beaufort 6 data discussed below). Rates were calculated for these schools detected in the entire study area and for schools stratified by area, calm and rough sea conditions, good and poor sun conditions, individual observers, and observer teams. ### RESULTS Data describing each leg of searching effort during the entire survey are summarized in Table 2. Information summarized for each marine mammal sighting encountered during the survey is presented in Table 3. The geographic positions of all schools detected during the survey are presented for each species category (code) in Figures 6 through 19. Observer estimates of school size are presented by species code in Table 4. During the entire survey, observers searched 13,761 km and detected 636 marine mammal sightings (Table 5). Dolphins were detected in 435 schools and whales were detected in 187 schools (14 schools contained both dolphins and whales). These included 9 species of dolphins and 14 species of whales. While operating in the searching mode in the study area (Figure 1), observers searched 13,317 km and detected 389 dolphin schools within 11.1 km perpendicular distance of the trackline (Table 6). Searching effort was conducted during Beauforts 0 through 6 conditions, although, because Beaufort 6 seas were very rough, data collected during this condition were omitted from the analysis. During Beauforts 0 through 5, 13,260 km were searched and 389 dolphin schools were detected. Of the 389 dolphin schools, 263 were large schools (i.e., average school size was 15 or more animals). The rate of detecting large schools in the study area was 19.83 schools/1000 km searched (Table 6). The <u>Jordan</u> conducted approximately 62% of its effort in the inshore area and only 1% of its effort in the south and west areas. Detection rates were much higher in the inshore area than in the west and south areas (Table 6). Sea conditions in the study area were rough; only 20% of the searching effort was completed in calm seas (Table 6). However, 41% of all large schools were detected during calm seas and the rate of detecting schools during calm seas was almost three times the rate detected during rough seas. Poor visibility conditions occurred only during 14% of the surveying effort during which 11% of the large schools were detected (Table 6). The rate of detecting schools during good conditions was slightly greater than the rate during poor conditions (20.53 and 15.57 schools/1000 km searched, respectively). Because observers switched vessels at the end of leg 2, data were recorded for all 12 observers on each vessel. Observers spent approximately equal time searching (Table 6). However, the percent of all schools that were detected by the observers ranged from 3 to 14%. Consequently, rates of detecting dolphin schools also varied greatly (range of 2.87 to 11.83 schools/1000 km). Both teams spent approximately equal time searching (Table 6). Team 1 had the highest detection rate (18.34 schools/1000 km). ### SUMMARY In this report, we have presented data on dolphin encounter rates, school size, and species composition which meet the primary objectives of the cruise aboard the <u>Jordan</u>. Data on effort and sightings have been summarized. We found that the rate of encountering dolphin schools was higher during calm seas than during rough seas, and the rate during good visibility conditions was slightly higher than the rate during poor visibility conditions. The rate was higher in the inshore area than in the south and west areas. Encounter rates for individual observers were variable. ### ACKNOWLEDGEMENTS Because of the work of many dedicated professionals, the cruise aboard the Jordan was successfully executed. Among those contributing to the success of the cruise were the observers who spent many hours collecting the data, the officers and crew of the Jordan who gave their continuous support, and L. Farrar (Jordan Port Captain) who provided liaison with ship support personnel and the scientists. We thank R. Schipper for his contribution to the CAST system. Critical logistical arrangements were completed by P. Stangl. Special efforts were provided in procurement by B. Engstrand and B. Watkins. people contributed to training the observers but A. Jackson, H. Bernard, R. Pitman, and P. Stangl provided valuable assistance. The manuscript benefited from critical reviews by Jean Davis, D. DeMaster, and S. Reilly. Part of the manuscript was typed by C. Ratcliffe. Finally, we are grateful to I. Barrett, J. Carr, D. DeMaster, and B. Remington for their support during the entire cruise preparation and execution. ### LITERATURE CITED - Barlow, J., W. Perryman, H. Bernard, M. Lynn, M. Lowry. In Prep. The use of aerial photography to calibrate ship-board estimates of dolphin school size. - Bowditch, N. 1966. American practical navigator, an epitome of navigation. U. S. Naval Oceanographic Office. H. O. Pub. No. 9. Washington, DC. 1524 pp. - Holt, R. S. 1987. Estimating density of dolphin schools in the eastern tropical Pacific Ocean by line transect methods. Fish. Bull. U. S. 85(3):419-434. - Holt, R. S. and A. Jackson. 1988. Report of a marine mammal survey of the eastern tropical Pacific aboard the research vessel <u>McArthur</u> July 30 - December 10, 1987. NOAA-TM-NMFS-SWFC-116. 143 pp. - Thayer, V. G., S.B. Reilly, P. C. Fiedler, R. L. Pitman, G. G. Thomas, and D. W. Behringer. 1988. Report of ecosystem studies conducted during the 1987 eastern tropical Pacific dolphin survey on the research vessel <u>David Starr Jordan</u>. NOAA-TM-NMFS-SWFC-115. 95 pp. - Smith, T. D. 1982. Testing methods of estimating range and bearing to cetaceans aboard the R/V <u>David Starr Jordan</u>. NOAA-TM-NMFS-SWFC-20. 20 pp. Table 1. Sea state conditions measured by the Beaufort scale (from Bowditch, 1966). | Wind
force
(Beaufort) | Knots | Descriptive | Sea Conditions | Probable
wave
height
in ft. | |-----------------------------|-------|--------------------|---|--------------------------------------| | 0 | 0- 1 | Calm | Sea smooth and mirror-
like | - | | 1 | 1- 3 | Light air | Scale-like ripple with-
out foam crests | 1/4 | | 2 | 4- 6 | Light breeze | Small short wavelets;
crests have a glassy
appearance and do not
break | 1/2 | | 3 | 7-10 | Gentle breeze | Large wavelets; some
crests begin to break;
foam of glassy appear-
ance. Occasional
white foam crests | 2 | | 4 | 11-16 | Moderate
breeze | Small waves, becoming
longer; fairly frequent
white foam crests | 4 | | 5 | 17-21 | Fresh breeze | Moderate waves, taking a
more pronounced long
form; many white foam
crests; there may be
some spray | 6 | | 6 | 22-27 | Strong breeze | Large waves begin to form white foam crests are more extensive every-where; there may be some spray | 10 | Daily searching effort recorded in the eastern tropical Pacific aboard Table 2. | | ! | | |------------|-----------------------
--| | 1987. | km
in leg | 6 . 1 . 2 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 | | cember 10, | sition
e longitude | 117 12 w
117 14 w
117 15 w
117 49 w
117 44 w
117 44 w
117 38 w
117 38 w
117 39 w
117 20 w | | De | posi
latitude | 32 27 n
32 24 n
33 24 n
30 19 n
29 44 n
29 44 n
29 44 n
29 46 n
29 26 n
29 14 n
29 26 n
29 14 n
29 36 n
29 47 n
29 36 n
29 36 n
28 51 n
28 51 n
28 51 n
28 51 n
28 52 n
28 52 n
28 53 n | | through | course
(deg.) | 173
173
173
173
173
173
173
173
173
173 | | ust 8 | beauf. | | | g Augu | sition
vert. | 333555555555555555555555555555555555555 | | durin | sun po
horz. | 000000000000000000000000000000000000000 | | rdan | codes
t rec. | 000
000
000
000
000
000
000
000
000
00 | | rr Jo | server
t righ | 22222222222222222222222222222222222222 | | Sta | ob:
lef | 00000000000000000000000000000000000000 | | David | speed
km/hr | | | the | date | 8708008
8708008
8708008
8708008
8708008
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009
8708009 | | • | leg | 00000000000000000000000000000000000000 | | Tanta | series | 00000000000000000000000000000000000000 | Table 2. (continued) | km
in leg | ٠. | 5.99 | ``` | ٠. ١ | <u>.</u> | ٠. | 7 | | 9 | | | | : ' | | | ٠, | ः | - ` | | ٠. | | ٧. | | ٧. | "! | | Ψ. | | 0 | 9 | n c | טיי | n 0 | , (, | ן ען | ന | സ | 4 | , | Η, | x | m i | 9 | $^{\circ}$ | σ, | ص. | М, | (| Vα | o c | 4 | |----------------------|----------|--------|----------|------------|-----------|----------|----------------|------|----------|------------|-----------------|---------|------------|----------------|--------------|----------|----------|--------------|--------------|--------------|----------|------|------------|-------|-----------|------------|------|----------|---------|--------|----------|-------|----------|-------|----------|------|------|----------|----------|----------|--------------|----------|------|------------|----------|------------|----------|-------------|----------|------|---------| | tion
longitude | 116 19 W | 1 | 116 16 W | | 1 | 116 12 w | | | 116 03 W | | | 115 55 | 1,0 | | 1 | 115 52 W | | | 115 45 W | 1 | 115 42 W | | | 15 38 | 115 36 w | 15 33 | | 115 31 w | 15 30 | | 115 25 W | 77 CT | 115 20 W | 2 | 115 18 W | | | 114 23 w | | 114 15 W | 4 T 4 | 4 13 | | | 114 06 w | | • | II4 OI W | 113 58 1 | | | | posi | 26 49 n | | 26 42 n | | , | 26 34 n | | | 26 15 n | | | 26 01 2 | す | | 1 | z 55 n | | • | 72 42 n | 1 | 25 37 n | | | 5 29 | 25 25 n | 5 20 | | 25 19 n | 5 14 | C
C | 25 U3 n | 4 00 | 24 53 n | } | 24 54 n | | , | 23 04 n | Ĺ | 22 52 n | 2.49 | 7 4.7 | | | 22 33 n | | 0 | 72 23 n | 22 17 n | 4 | | | course (deg.) | 5 | 154 | ΩL | O F | വ | 2 | S | 2 | 5 | \ <u>C</u> |) Lr | א נ | 7 4 | ηı | nι | nι | n L | nι | a ı | nι | n ı | n l | n : | 3 | 154 | 2 | 5 | 5 | 9 | വ | വ | 154 | א נ | S | 10 | 10 | 154 | \cap 1 | \cap 1 | 154 | ∩ 1 | വ | 0 1 | 0 | IO I | \sim 1 | ~ 1 | O 10 | 154 | 10 | ١ ١ | | beauf. | 2 | 7 | 20 | 7 (| 7 : | 7 | 2 | 7 | 7 | S | 3 (| ۰, | v c | V (| 7 (| N (| 'nί | n (| n | v) (| m (| m (| m | m · | n | e | ന | m | m i | י) ני | n (1 | ე (~ |) W | m | т | ო | ო 1 | 2 | ~ < | 77 (| 7 (| 200 | ∾ (| m | സ | ν) (| .n. c | " " | n r |) M |) | | position
z. vert. | - | 04 03 | | | , | ۍ د
د | эn с | ٥ (| . | . | 0 (| 0 | 0 0 | 5 (| - | - | 0 CT | · | 4 | | ec. horz | 2 | 29 | വ | 7 [| | 4 | , | œ | Ŋ | 2 | 1 ~ | - L | n (| 9 (| 4. | | | | ver code
right r | | 22 6 | observer
left rig | 1.9 | 0.5 | 27 | \ 1
0 | 00 | 89 | 04 | 51 | 22 | 67 | ر
ا | 000 | 9 10 |) L | 0 2 | 7,7 | 77 | 40 | 40 | α (| 200 | 22 | 19 | 0.5 | 22 | <u>7</u> 9 | 05 | 51 | 89
9 | 0.4 | 77 | /0 | , C | 22 | 22 | 29 | 29 | 89 | 0.4 | TC I | 27 | /9 | 22 | 05 | 29 | 27 | 8 | ο
1
2 | 7 5 | 4 0 | r*
> | | speed
km/hr | 7.9 | 17.96 |
 | | ٠.
د د | 0 | 9 | 9.0 | 8.8 | 8.8 | . α | α | | ,
, | ν.
4. | ν.
4. | ν.
4. | י
קיי | y. | ν.
4. | y.
4. | 9.4 | 9.4 | 9. | 9.4 | 9.4 | 9.4 | 9.4 | 4.6 | υ c | ν. | 4.0 | . 4 | 4.8 | 9.4 | 9.4 | 9.4 | 9.4 | χ.
α | χ
α | α
α | χ.
α | ဆ | 9.9 | 9.0 | | 200 | 200 | , 0 | 0 | ; | | date | 7081 | 870810 | 708T | /UST | 100T | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7007 | 1007 | 1007 | 7007
7007 | 7087 | / UST | 7007
7007 | 7007
7007 | 1007 | 180/ | 7081 | 1087 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | /08T | 7007 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 1001
1001 | 180/ | 7081 | 7081 | 7081 | 780/ | 180/ | 7007 | 7007 | 7081 | i | | leg | 0.1 | 02 | 03 | → 1 | 0.0 | 90 | 0.1 | 08 | 60 | 10 |) [- | 1 (- | 4 5 |) , | -1 r | Ω, | 9 1 | ~ ← | ρς | ٦ <u>.</u> | To | 000 | 60 | 04 | 02 | 01 | 02 | 03 | 0 d | 00 | 5 6 | 3 6 | 3 6 | 04 | 0.5 | 90 | 0.7 | 01 | 20 | To | OT
O | To | 02 | 03 | 01 | 70 | 03 | 70 | 200 | 100 | 3 | | series | 01 | 01 | 0.T | 7.0 | 7.5 | 01 | 10 | 01 | 01 | 0.1 | 5 | 100 | 1 5 | T + | 7 6 | 0.1 | TO | OT
O | 70 | TO | 20 | 200 | 0.5 | 05 | 02 | 03 | 03 | 03 | 03 | 000 | 2 0 | 0 0 | 0.0 | 04 | 04 | 04 | 04 | 10 | 01 | 700 | 03 | 0.4 | 04 | 04 | 0.5 | ภ เ
0 (| 90 | 90 | 000 | 07 | > | km in leg 6.98 3.49 2.27 2.27 2.27 10.054 10.054 1.62 1.62 1.62 1.62 1.62 0.97 $\begin{array}{c} 6.48 \\ 6.48 \\ 6.48 \\ 7.77 \\ 7.78 \\ 7.$ course position (deg.) latitude longitude ≥ ≥ 3 ⋧ 3 3 3 3 3 54 4240 27 27 02 38 111 111 111 ¤ ממממ a a a a n n цц п ц d d d d d d n ď q ď ц n n 4 4 4 46 13 07 56 51 49 43 31 00 21 17 116 03 00 119 16 14 08 03 58 52 22 08 58 53 18 18 22 21 21 21 21 21 21 21 21 19 19 119 119 118 18 21 21 18 conrse beauf. sun position horz, vert. 03 003 003 005 001 112 112 112 113 001 001 002 003 003 003 1100 1100 11100
11100 1100 observer codes left right rec $\begin{array}{c} 0.05 \\ 0.$ $\begin{array}{c} 222 \\$ speed km/hr 870811 870811 870811 870811 870811 870811 870811 870811 870811 870811 870812 870813 870813 date leg series Table 2. (continued) | km
in leg | 1 12 0 | 2 | 4 | ο. | ٥, | 9. | ٥. | r. | 0 | | . " | S | 4. | 4. | ω. | 4. | ۲. | ω, | ထ္ | ٥. | ĸ. | ထ္ | ထ္၊ | v. | ن ، | ن ، | wi. | 4. (| χ. (| | ن د | , (| 2 00 | 4 | σ. | α, | ⊣ • | * < | ۳ ۳ | ייי (| 9 | 5. | o, | <u>- 1</u> | ٠, ز | ٦, | 3.70 | |----------------------------|---------|------|------|---------|------|------|---------|------|------|---------|----------|------|---------|------|------|-----------|------|------|---------|------|------|------|---------|------|------|------|---------|------|---------------|------------|-----------|------|---------|------|---------|------|--------------|------------|------|---------|------|------|---------|-------------|---------|------|------------------| | cude | 33 W | | , | 28 w | | | 26 w | | | 20 w | , | 2 | 14 w | | | M 01 | | | 07 w | | | | 26 W | | | | 51 w | (| 4α
Σα | ס עב | œ | LC. | × × | + | 24 W | | | 73 14 | 2 | W 5 | 1 | | 21 w | | 21 w | | 3 | | tion
longitude | 110 | | | 110 | 0 | | 10 | 0 | | 110 | , | 0 | 110 | | | 110 1 | | | 110 (| | | | 109 | | | | 109 | 0 | 109 4 | ر
ا | מכ | 60 | 109 2 | | 109 2 | | | 100 | n | 109 2 | 1 | | 109 2 | | 109 2 | | 109 1 | | position
latitude longi | 15 36 n | | | 15 25 n | 5 24 | | 15 19 n | 5 1 | | 15 06 n | <u>.</u> | 4 57 | 14 55 n | | | 14 45 n | | | 14 37 n | | | | 14 18 n | | | | 14 10 n | | 14 05 n | 2 i | 70 5 | 2 02 | 11 56 n | | 11 54 n | | | 11 A5 n | ř | 11 40 n | 2 | | 11 35 n | | 11 18 n | | 11 11 n | | course (deg.) | າດເ | ט ני | S | S | ഗ | S | S | S | S | 3 | 'n | 5 | S | S | 2 | 5 | S | 2 | S | 4 | ₹ | ₹, | ₹. | 母∙ | 母・ | 4 | ₩. | 4. | 4 . | 4 - | * < | + 4 | 9 | 9 | 9 | 9 | o v | 2 (| o c | v | 9 | 9 | S C | O | 2 [~ | 7 | 172 | | beauf. | m c | n m | m | n | m | m | ო | m | m | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | m i | wi i | m · | ന | w. | m (| m c | v) (r | 'nι | יז ני | J 4 | 4 | 4 | 4 | ₩. | d' ₹ | ₽ < | ۲ ح | י ור | J LO | 4 | ო • | ਰਾ < | r 4 | 4 | ហហ | | position
. vert. | 03 | 000 | 02 | 02 | 02 | 02 | 01 | 01 | 0.1 | 01 | 173 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 01 | 01 | , | 02 | 02 | 02 | 020 | 200 | 200 | ۳ ر
د د | 50 | | | | | | ć | 200 | 9 | 0.5 | 02 | | | | | | | | sun po | 60 | 60 | 60 | 60 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 04 | 04 | 04 | 04 | 04 | 04 | , | 04 | 04 | 04 | 40 | 0.4 | 40 | 4.0 | O. | | | | | | | n o | | | 60 | | | | | | | | codes
t rec. | 51 | 22 | 29 | 0.5 | 0.5 | 22 | 29 | 68 | 04 | 04 | 51 | 51 | 0.5 | 22 | 29 | 05 | 22 | 29 | 51 | 51 | 89 | 04 | 05 | 02 | 22 | 19 | 05 | 22 | 5.
2. | 200 | ρς
Ο C | + C | 22 | 22 | 29 | 0.5 | 3 6 | 27
27 | 2.5 | 1 1 | 04 | 04 | 4.0 | 40 | 67 | 22 | 22
05 | | observer ce
eft right | 04 | 02 | 22 | 29 | 29 | 02 | 22 | 04 | 51 | 5 | 89 | 89 | 29 | 02 | 22 | L9 | 02 | 22 | 99 | 68 | 04 | 51 | 29 | 29 | 05 | 22 | 90 | 30 | α
• α | 4 6 | 0 r | 129 | 0.5 | 0.5 | 22 | 67 | / u | 0 0 | 0 0 | 04 | 68 | 89 | 8 6 | 6
2
1 | 05 | 29 | 67 | | obse
left | 68 | 67 | 0.5 | 22 | 22 | 29 | 02 | 51 | 68 | 89 | 04 | 04 | 22 | 29 | 05 | 22 | 29 | 02 | 04 | 04 | 51 | 89 | 22 | 22 | 29 | C) | 7.7 | 0 | 04 | 7 5 | 70 | 200 | 67 | 29 | 05 | 22 | 22 | ~ α | 89 | 80 | 51 | 51 | 21 | 27 | 22 | 02 | 05
67 | | speed
km/hr | ا م | 9 | 6 | 9. | ö | ċ | ö | ö | 0 | ď | 0 | 6 | 6 | 6 | 9 | 6 | ė, | ė. | 6 | ó. | တ် | o, | 6 | o, | o., | ģ | 5,0 | | α | 0 | o d | ٠. | | 7 | 7 | ٠. | ٠, | :, | : _ | | : .: | æ | | ٠
د د | | œ. | 18.52 | | date | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 |
7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | T80/ | 7007 | 7007 | 7081 | 7081 | 7081 | 7081 | 7081 | 7087 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 870814
870814 | | leg | 010 | 0 0 | 04 | 0.5 | 01 | 05 | 03 | 04 | 0.5 | 90 | 07 | 0.1 | 02 | 03 | 04 | 0.5 | 90 | 0.7 | 08 | 60 | 10 | 11 | 12 | 133 | 14 | 15 | 9 1 | 17 | Ω . | 7 6 | 100 | 0.0 | 0.2 | 03 | 04 | 0.5 | 00 | ۰ ۵
د د | 0 0 | 0.5 | 02 | 01 | 000 | £00 | 0.T | 02 | 01 | | series | 02 | 000 | 0.5 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 04 | 400 | 00 | 900 | 200 | 01 | 01 | 01 | 01 | 0.7 | 7.0 | 100 | 2.0 | 020 | 03 | 03 | e e e | 0 0 | 04 | 0 02 | Table 2. (continued) | km
in leg | 5.56 |) CO (| o +1 • | -1 | 7 | シィ | | \circ | 4.0 | \sim | 41.1 | – (1) | п) - | 4 4 | w 0 | , -d. | 4. | 4 1- | 10 | CJ 4 | | | · | | | | : : : : | 0 0 | | 0 0 | | • | |-----------------------|------------------|--------------|----------------------|-------|------|----------|-------|----------|--------------|--------|------|--------------------|--------|----------------------|-------|-------|-----------|-------|-------------|------|--------------|------|----------|------------------|-------------------|-------------------|--|-------------|----------|----------|-----------------|--------------| | sition
e longitude | 109 19 W | 09 18 | 109 17 w
109 16 w | | | 109 14 w | 1 | 109 13 w | | | 0 | 108 58 W | | 09 11 | 09 17 | 09 20 | 109 30 w | 09 31 | | | 109 53 w | | 110 04 W |)
H | 111 55 w | 112 02 W | 112 06 w | 2 11 | 112 18 w | 112 30 W | 112 39 W | 1 | | posit
latitude l | 11 07 n | 0 58 | 10 52 n
10 48 n | | | 10 39 n | | 10 28 n |) | | | 08 40 n
08 38 n | ,
, | 8 39 | 8 38 | 2 X | 08 43 n | 8 41 |)
F | | 08 37 n | | 08 34 n | 5 | 08 11 n | 08 10 n | 08 10 n | 808 | u 90 80 | 08 03 n | 08 01 n | 5 | | course (deg.) | 172 | 171 | 171 | 171 | 176 | 176 | 176 | 176 | 172 | 172 | 172 | 129 | 263 | 263
263 | 263 | 263 | 259 | 259 | 259 | 259 | 259
259 | 259 | 259 | 259 | 257 | 257 | 257 | 257 | 257 | 257 | 255
255 | 255 | | beauf. | សស | o ro | വവ | rU ru |) IO | N N | 74 | 40 | 9 79 | 02 r | · ~ | ന ന | m | n w | m | m r | റ സ | m n | ი ო | m | n m | mĸ | m | o 0 | - -1 - | -1 1 • | | | ન ન્ન ન | | -1 1 | - | | sition
vert. | | | | | | | | | 03 | 03 | 02 | 02 | 10 | 12 | 12 | 12 | 12 | 01 | 01 | 05 | 0 0 0 | 000 | 03 | 03 | S | 033 | 03
03 | 000 | 000 | 010 | 155 | 12 | | sun po |
 | | | | | | | | 60 | 60 | 60 | 10 | 07 | 900 | 05 | 4.0 | 01 | 01 | 01 | 01 | 01 | 01 | 10 | 010 | Ċ | 000 | 90 | 90 | 900 | 900 | 900 | 90 | | codes | 67 | 2 8
9 9 | 04
22 | 022 | 79 | 22 | 67 | 0.4 | 0 0 | 89 | 51 | 67
50 | 02 | 55
57
57
57 | 51 | 67 | 05 | 04 | 51 | 89 | 67
05 | 22 | 89 | 51 | 29 | 55 CO | 67 | 05 | 04 | 000 | 220 | 67 | | erver c
right | 05 | 04
04 | 51 | 22 | 0 0 | 67 | 0 2 2 | 51 | 0 80
0 90 | 51 | 40 | 22 | 67 | 05
1 | 68 | 22 | 27 | 51 | 7T
9 | 04 | 22
67 | 05 | 51 | 0
4
4
4 | 22 | 05 | 55
55
55
55
55
55
55
55
55
55
55
55
55 | 67 | 9 6 | 22 | 67 | 0.5 | | obse
left | 22 | 51 | 68 | 67 | 222 | 05 | 22 | 68 | 27 | 0.4 | 68 | 95 | 22 | 67 | 04 | 05 | 550 | 68 | 0
0
4 | 21 | 02
22 | 67 | 040 | 9
9
8
8 | 020 | 67 | 05 | 22 | 51 | 67
67 | 000 | 22 | | speed
km/hr | 18.52
18.52 | CI CI | CC | n Ch | U L | N | വ | 10. | | 4 - | 77 | | . 4. | 4, r. | .5 | ຜູ | ສຸສຸ | 60 | ສຸດ | 00 | 8 8 | | | ω α | 80 | ω ω | ω ω | 80 | 2 O | | သတ္ဝ | သထ | | date | 870814
870814 | 7081
7081 | 081 | 081 | 081 | 081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081 | 7081
7081 | 7081 | 7081 | 708J
7081 | 7083 | 7081
7081 | 708]
708] | 708 | 7087 | 708 | 708. | 708 | | leg | 03 | 05 | 010 | 03 | 0.0 | 90 | 70 | 60 | 007 | 03 | 0.5 | 01 | 000 | 03 | 020 | 03 | 010 | 02 | 01 | 03 | 04 | 000 | 0 0 5 | 0.5 | 010 | 03 | 04 | 0.2 | 01 | 03 | 000 | 00 | | series | 05 | 05
05 | 900 | 90 | 000 | 90 | 90 | 90 | 00 | 10.5 | 010 | 00 | 5 EO | 03 | 04 | 0.4 | ი 90
0 | 90 | 07 | 07 | 07 | 80 | 0 0 | 8 8 | 01 | 01
01 | 01
02 | 05 | 03 | m m (| 03.0 | 03 | km in leg 94.32 9.255 0.31 1.23 10.80 10.80 10.80 4.94 4.94 4.94 1.23 6.17 6.17 6.17 2.27 2.27 2.27 .44 .17 .01 .32 .25 .28 3333 ≥ ≥ position latitude longitude 333333 **≯** ≯ 3 3 ≱ ≥ ≥ ≥ ⋧ ⋧ 3 3 ;≥ 05 15 22 24 25 28 28 35 19 39 23 54 57 53 23 115 115 115 115 116 116 gggg цц ď ₽ дд ц П Д d d d 48 46 59 54 53 58 02 10 30 49 55 59 29 60 60 60 03 10 (deg.) course beauf. ğ sun position horz. vert. 03 02 01 02 02 03 12 11 12 11 11 11 11 04 04 04 04 H H H H 11 11 12 observer codes eft right rec speed km/hr 18.52 118 870816 870816 870816 870816 870816 870816 870816 870816 870816 870817 870818 870818 870818 date leg series Table 2. (continued) | | ٠, | |--------|---------| | ָרַ מַ | ţ | | à | í | | | 5 | | | j | | ζ | 7 | | - | | | ٠,- | 4 | | + | ر | | | | | 2 | 3 | | Ċ | Ň | | ` | , | | - (|) | | | | | | ٠. | | _ | - | | | - | | J | - | | Ĵ | • | | `` | : | | 0 | | | 0 | ; | | • | • | | • | • | | · | ·
U | | | י
נו | | | י
נו | | | י
נו | | · | י
נו | | 1 | !
! | | |-------------------
--|----------------------| | km
in leg | 2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2.5.3
2. | O (1) O | | Eude | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Ŋ | | tion
longitud | 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 | | posi
latitude | 10 31 n
10 31 n
10 44 0
10 45 n
10 47 n
10 47 n
10 48 n
10 53 n
11 05 n
11 05 n
11 05 n
11 05 n
11 22 n
11 22 n
11 23 n
11 23 n
11 23 n
11 23 n | 1 29 | | course (deg.) | 00000000000000000000000000000000000000 | 660
660 | | beauf. | D P D D D D D D D D | ๛๛๛ | | position
vert. | 000000000000000000000000000000000000000 | 01
01
12 | | sun pc | 177777777777777777777777777777777777777 | | | codes | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22
05
67 | | erver c
right | 00
00
00
00
00
00
00
00
00
00 | 67
22
05 | | obse | 000 | 05
67
22 | | speed
km/hr | 16.88
16.88
17.77
17.77
18.88
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18.89
18 | 888 | | date | 870818
870818
870818
870818
870818
870818
870818
870818
870818
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819
870819 | 7082
7082
7082 | | leg | 00000000000000000000000000000000000000 | 02
03
04 | | series | | 03
03 | Table 2. (continued) | km
in leg | | ا در ر | | | | | | | | | | | | | | m | | | | | | o m | | m | | | | | | | | | | | | | 6.81 | | | |-----------------------|-------|-------------------|----------|----------|----------------|-------|-----|------------------|-----------|--------------|----------|-------|--------------|----------|-----|------|--------|----------|-----|-------|-----|-------|-----|----------------|--------|-----|--------|-------------|----------------|------|----------|-------------|------------|--------|----------------|--------|--------|-------------|--------------| | nde | 5 W | A | | 3 | | 3 | | | χ
2 | 3 | | 4 w | | A | | | | × | | 4 w | | 7 W | | | ×
× | | 8 w | | ≯ | | | 3 Z
9 Z | | 2 w | | м 6 | |
≯;
ລເ | | | tion
longitud | 107 3 | 107 3 | 07 | 107 1 | | 106 5 | | | 106 5 | 106 |)
} | 106 4 | 06 4 | 105 3 | | | L
C | 7 COT | | 105 1 | | 105 0 |) | | 104 5. | | 104 48 | | 4. | 04 4 | 04 3 | 104 30 | ን
ታ | 104 27 | | 104 19 | 04 1 | 103 15 | T 50 | | position
tude long | п | п | | ជ | | g | | | q | ۲ | = | п | | Д | | | s | □ | | u | | 2 | : | | d | | ц | ; | đ | u | п | ದ 1 | ∃ . | ц | | ¤ | п | ជន | u | | latit | 11 28 | 11 27 | 11 25 | 1 2 | | 11 23 | | 1 | 11 22 | 11 27 | 4 | 11 33 | 13 | 13 07 | | | 2 | - | | 13 25 | | 13 33 | • | | .3 48 | | .3 54 | 27.0 | o
O | 4 0 | 4 0 | 4 08 | -1
 - | 4 18 | | 4 21 | 4 | υ,
4, 4 | J
4. | | course (deg.) | 0.0 | | ש ע | 0.0 | 660
660 | | 660 | 1 | O 10 | | | 10 | 10.10 | . ~ | 037 | 03.7 | 037 | 037 | 037 | 037 | 037 | _ ~ | 037 | 037 | 037 | 037 | 037 1 | 037 | | | | 03/
037 | | 037 1 | 037 | 034 1 | 34. | 4 < | | | beauf.
no. | | m | n m | m | m m | 'n | 4 | 4 | 4 | # (* |) 4· | 4 | ₹* < | t M | m | m (| m r | റന | m | m (| m r | റ ന | m | ر ب | .n c | | 4 | <† < | t 4 | 4 | ന | יז ני |) W | m | m m | ຸຕຸ | m m (| 77 (| 1 (2) | | sition
vert. | 12 | 77 | 01 | 01 | 01 | 01 | 01 | 02 | 0.5 | 200 | 02 | 03 | 03 | 3 | 03 | 02 | 2 0 | 2 0 | 02 | 05 | 01 | 01 | 01 | 12 | 122 | 12 | 12 | 12 | 710 | 01 | 01 | 70 | 020 | 02 | 000 | 020 | 03 | 00 | 03 | | sun pos | 12 | 77 | 90 | 90 | 900 | 90 | 90 | 80 | 20
0 | 0 0 | 60 | 60 | 60
0 | | 01 | 01 | 01 | 0.1 | 01 | 01 | 01 | 01 | 01 | 01 | 7.7 | n o | 60 | 60 | 0 80 | 08 | 800 | 2 C | 80 | 08 | 800 | 800 | 80 | 5 | 01 | | codes
t rec. | 22 | 51 | 040 | 29 | 55
02
02 | 67 | 22 | 22 | 22 | 200 | 04 | 29 | 22 | 51 | 89 | 89 | 04 | 2 2 | 29 | 05 | 22 | 89 | 51 | 04 | ၁ င | 27 | 67 | 02 | 22 | 04 | 04 | 7.5 | T 89 | 0.5 | 05
22 | 22 | 51 | 77 | 22 | | erver corright | 67 | 89 | 51 | 05 | 22 | 05 | 29 | 67 | / 0 | 2 4 0 | 21 | 0.5 | 67 | 9 9 | 04 | 04 | 51 | 0.5 | 22 | 29 | 05 | 51 | 04 | 89 | / u | 22 | 22 | 67 | 000 | 15 | 2 | 20 00 | 0.4 | 29 | 67 | 020 | 7 8 1 | 0
0
1 | 05 | | obse
left | 05 | 04 | 7C
89 | 22 | 05 | 22 | 05 | 0
0
1
0 | 05 | 7 5 | 68 | 22 | 05 | 0.4 | 51 | 51 | 92 | 22 | 0.5 | 22 | 67 | 0.4 | 89 | 51 | 77 | 0.5 | 0.5 | 22 | / 0 | 68 | 89 | 400 | 51 | 22 | 22 | 29 | 0 4 0 | 10 | 29 | | speed
km/hr | 8 8 | | 0 80 | 8 6 | သ ထ
သ ထ | 8 | 8.8 | თ.
თ. | ည္ ၀
သ | | 8 8 | 8.8 | დ. დ
დ. დ | | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |)
) | 0.6 | 4.6 | 0.0
4. 2 | 4.6 | 4.6 | 6.
4. | у с
4. 4 | . 4. | 4.6 | ດແ | 4. | 19.45 |) .
 | . 7 | | date | 708 | 708 | 38 | 302 | 30/ | 302 | 302 | 307 | 200 | 300 | 302 | 708 | 307 | 307 | 30/ | 307 | 30/ | 302 | 208 | 708 | 30/ | 302 | 708 | 708 | 200 | 208 | 807 | 708
708 | 802 | 807 | 708 | 200 | 802 | 708 | 80
0
0 | 708 | 870821 | 200 | 80 | | leg | 1 | 90 | | | | series | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 500 | 03 | 04 | 04 | 04 | 01 | 0.2 | 02 | 700 | 0 0 0 | 02 | 02 | 7 0 | 000 | 02 | 02 | 200 | 03 | 03 | 03 | 03 | 03 | 04 | 0 C | 05 | 90 | 90
00
00 | 90 | 000 | 100 | 01 | | $\overline{}$ | |---------------| | d | | ue | | Þ | | 'n | | | | nt | | ä | | S | | ت | | | | | | • | | 7 | | ۵. | | Φ | | ۵. | | km
in leg | 7.26
10.72
12.96
11.34
5.19 | $\omega \cap \omega$ | ט נוז נוז נו | I II I OI O | ,,,,,, | 101810 | 4,0,0,0 | W 01 W | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _ , _ , | 4 0 K | | | | | | |-------------------|--|------------------------------|----------------------|----------------------|---------------------------------------|----------------------|-------------------------|----------------|---|----------------------|----------------------------|--|------------------------------|--------------|----------------------|----------| | tion
longitude | 103 08 W
103 03 W
102 57 W
102 52 W | 02 43 | 02 37
02 35 | 724 | 102 09 w
102 04 w | 101 54 w
101 04 w | 100 46 w | 100 36 w | 100 26 w | 100 22 w | 100 05 W | 099 55 W
099 47 W
099 38 W | 99 25
99 23 | 099 18 w | w 90 660
w 95 860 | 098 52 W | | posi
latitude | 15 52 n
15 55 n
16 09 n | 6 25 | 6 26 | 16 17 n
16 18 n | 16 17 n
16 17 n | 16 11 n
16 00 n | 15 56 n | 15 52 n | 15 45 n | 15 45 n | 15 47 n | 15 48 n
15 46 n
15 45 n | 5 44 5 43 | 15 39 n | 15 37 n
15 21 n | 15 19 n | | course (deg.) | 046
046
046
032 | | | | | | | | | | | | | | | | | beauf.
no. | aaaaaa | റനനന | m m c9 (| 200, | न न्न त | 7 H M F | ാനനന | า๓๓๓ | ๛๛๛ | m m m | מ נית נית | י הי הי הי הי | നെനന | നന | m m M 1 | 2.5 | | sition
vert. | 03
02
02
01 | 001 | 122 | 172 | 022 | 033 | 0000 | 7777 | 02
01
01 | 01
01
01 | 01
12 | 0015 | 0000 | 02 | 03 | 03 | | sun pos
horz. | 01
01
02
02 | 0000 | 01 | 000
490 | 0000 | 11000 | 77777 | 1 | 11 4 4 | 122 | 01 | 0000
44707 | 0000 | 90 | 125 | 12 | | codes
t rec. | 67
05
04
22 | 002
002
003 | 68
04
4 | 51
67
05 | 75
70
70
70
70 | 052
04
13 | 68
67
67 | 022 | 8 8 7 9 | 68
51 | 05 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 05
67
22 | 22 | 51
05
1 | 22 | | erver c
right | 00
05
05
05
05 | 67
05
04 | 04
04
51 | 68
67
67 | 21
21
21 | 67
51
51 | 0000
00000
002000 | 67
22
05 | 511 | 51
51
04 | 0
2
2
2
2
3 | 00
04
08
08
08 | 22
05
67 | 67
51 | 68
67
67 | 02 | | obse | 05
22
68
51 | 22
67
51 | 51
51
68 | 04
05
23 | 04
04
1 | 05
67
68 | 51
67
22 | 67
67
67 | 0000 | 00
40
40
89 | 51 | 04
04
10
10
10
10
10
10
10
10
10
10
10
10
10 | 02
02
02 | 05
68 | 04
22
2 | 29 | | speed
km/hr | 20.74
20.74
19.45
19.45 | 4444 | 4.4.4. | 4.4. | | 2.0 | 00000 | ,,,,,, | 000 | 000 | 000 | 20004 | 444 | 22.4 | 0.00 | 8.5 | | date | 870822
870822
870822
870822
870822 | 7082
7082
7082
7082 | 7082
7082
7082 | 7082
7082
7082 | 7082
7082
7082 | 7082 | 7082 | 7082 | 7082 | 7082 | 7082 | 7082 | 7082
7082
7082
7082 | 7082
7082 | 7082
7082
7082 | 7082 | | leg | 04
05
06
07 | 01
03
01 | 02
03
01 | 01
01 | 01001 | | 0000 | 0000 | 2110 | 113
013
03 | 03 | 000 | 02
03
04 | 01
02 | 03
04
01 | 02 | | series | 001 | 03
03
04 | 04
05 | 007
08
08 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1110 | 1111 | 1111 | 001 | 0000 | 000 | 00000
000000 | 0 0 0 0
0 0 0 0 | 06
06 | 06
01 | 01 | | | ! |---------------------------|------------------|--------------|----------|----------|------|----------------|----------|-----|------|--------------------|-------|----------|------|-----|----------|----------|-----------|----------|-----|----------|------------|-------------|-------|-------|-------|----------------|--------------|-------|--------|----------|----------|-------|-------|-------------|--------------|-------|------|----------|-------------|----------|--------| | km
in leg | 8.03 | m | `:- | | ۳, ۱ | : ` | : ' : | ` ' | | | | ~ | ٠. | | * ' | ٠. ١ | ٠,٠ | | | w | ٠, ۵ | ,, 0 | . • | _ | (1) | U | 900 | 1 4 | (4) | ω. | 4 C | 2 | ຸຕ | ന | (| N 0 | 14 | C4 (| ∞ • | 4.0 | 9 | | ion
ongitude | W 47 W | | M 8E 860 | 098 27 w | 7 | 098 19 W | 098 14 w | | 90 8 | 098 04 w | 70 00 | 097 52 w | | | 097 43 w | | 97 25 | 097 26 w | | 97 22 | 97 L4 | 90 76 | 97 05 | 97 05 | 97 00 | 70
70
71 | 096 53 w | 96 50 | 96 48 | | 06 90 | 96 25 | 96 17 | 96 14 | 096 10 w | 96 04 | | 095 58 w | 1
1
1 | 095 49 W | 94 14 | | position
latitude long | 15 18 7 |)
 | 15 15 n | 15 04 n | i i | 10 04 n | 15 05 n | | 03 | 15 02 n
15 02 n | 2 | 15 05 n | | | 15 03 n | | 5 11 | 15 11 n | | 5 12 | 5 TO | 7 1 2 | 5 09 | 5 08 | 5 06 | 0 L | 14 54 n | 4 52 | 4 51 | | ٦
٦ | 4 51 | 4 52 | 4 49 | 14 51 n | 4 51 | | 14 51 n | 1 1 1 1 | 14 51 n | 4 24 n | | course | 110 | 110 | 110 | 080 | 080 | 0 0 0
0 7 0 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 080 | 104 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 060 | 060 | 060 | 060 | 060 | 060 | 060 | 060 | 060 | 060 | 060 | 060 | 105 | | beauf. | 22 | 7 | 02 C | 7 | ~ ~ | 7 C | 9 (7 | 7 | ~ | N C | 1 (7 | ~ ~ | w (r | n | m · | ~ ~ | 7 (| 2 2 | 2 | ∾ (| 7 0 | 4 () | 2 | 7 | m ć | 7 (| 7 m | د | m | .n c | יז ני | റ ന | ~ | Н | ← 1 ← | ⊣ ~ | 2 02 | 2.0 | . | o 4 | 5 | | position vert. | 03 | 0.5 | 020 | 0.1 | 01 | 7.0 | 12 | 12 | 01 | 12 | 12 | 173 | 12 | 12 | 12 | 01 | 7 0 | 02 | 03 | 03 | | 03 | 03 | 03 | 05 | 200 | 0 0 | 01 | 01 | 01 | 12 | 12 | 01 | 12 | 05 | 0 0 | 05 | 02 | 700 | 03 | 03 | | sun pc
horz. | H H | | H F | 01 | 01 | J [| 12 | 12 | 12 | 12 | 15 | 12 | 0.0 | 90 | 90 | 90 | 90 | 90 | 0.7 | 90 | - | 0 F | 11 | 11 | 11 | | ન ન ન | 11 | 12 | 12 | 12
13 | 12 | 12 | 90 | 900 | 90 | 90 | 90 | 9 0 | 90 | 11 | | codes
t rec. | 67
05 | 22 | 51
04 | 67 | 05 | 22 | 29 | 0.5 | 51 | C 8 | 04 | 22 | 77 | 0.5 | 05 | 22 | , 89
9 | 89 | 05 | 05 | 7.1 | 21 | 89 | 89 | 04 | 200 | 67 | 51 | 51 | 40 | 000 | 22 | 29 | 04 | 98 | 22 | 0.5 | 67 | 0 /
1 L | 7F
68 | 29 | | erver | 22 | 0.5 | 40
88 | 22 | 67 | 0 0 | 22 | 19 | 89 | 0 0 0 | 15 | 0.5 | 22 | 29 | 29 | 02
33 | 51 | 51 | 19 | 29 | ο α
ο α | ၁ တ | 04 | 0.4 | 51 |)
(| 22 | 04 | 04 | ομ | 77 | 0.5 | 0.5 | 68 | 04 | 67 | 22 | 05 | C 0 | 0.0 | 22 |
 obs
left | 05 | 29 | 7 68 | 0.5 | 22 | 79 | 05 | 22 | 04 | 1.0 | 68 | 67 | 0 0 | 22 | 22 | / Q | 0.4 | 04 | 22 | 22 | 0.4 | 04 | 51 | 51 | 90 | 7 7 9 | 05 | 89 | 89 | T C | † C | 67 | 22 | 51 | 51 | 0.5 | 67 | 22 | 77 | 51 | 0.5 | | speed
km/hr | 24.08 | 4. | 4.4 | 0 | 00 | | 0 | 0 | 0,0 | , . | . 6 | 90 | ,,, | 6 | 9.6 | ກຸດ | , u | 8 | TL) | 310 | , a | ن ر | L) | וניא | א נא | אוני | 3 (4 | N | \sim | N (| ۷ – | - | ~ | | 4 4 | 4 | 4 | 4. | 4 | 4 | 0 | | date | 870824
870824 | 708 | 200 | 708 | 708 | 200 | 302 | 302 | 708 | 706 | 302 | 302 | 307 | 307 | 708 | 200 | 302 | 302 | 302 | 30/ | 200 | 302 | 708 | 708 | 30/ | 200 | 208 | 708 | 708 | 200 | 200 | 801 | 708 | 208 | 30/ | 902 | 108 | 708 | 200 | 208 | 708 | | leg | 04 | series | 01 | 01 | 01
01 | 02 | 05 | 200 | 03 | 03 | 04 | 0 0 | 0.5 | 0.5 | 0.5 | 0.5 | 90 | 90 | 07 | 80 | 60 | 00
10 | T 0 | 02 | 03 | 04 | 05 | 200 | 80 | 60 | 60 | ה מ
מ | 000 | 11 | 12 | 13 | 1.
4. | 15 | 15 | 15 | T T | 15 | 0.1 | Table 2. (continued) | 1 1 | | | |------------------|--|------------| | km
in leg | 12.35 | υr. | | nde | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | м
0 | | tion | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 092 3 | | posi
itude | 22 00 00 00 00 00 00 00 00 00 00 00 00 0 | 14 n | | lat | 4 4 4444 4444 4446 66 <td< td=""><td>13</td></td<> | 13 | | course (deg.) | 1100
1100
1100
1100
1100
1100
1100
110 | 180 | | beauf. | $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ | ກຕ | | position vert. | 01 033333333333333333333333333333333333 | 12 | | sun pos | 000000000000000000000000000000000000000 | 110 | | codes | 000
000
000
000
000
000
000
000
000
00 | 22 | | erver c
right | 00000000000000000000000000000000000000 | 22 | | obse
left | 20000000000000000000000000000000000000 | 05 | | speed
km/hr | 200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00 | ນ ຄວ | | date | 870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826 | 7082 | | leg | 00000000000000000000000000000000000000 | o ~ | | series | 000000000000000000000000000000000000000 | 04 | Table 2. (continued) | 1 | ! | |-------------------
---| | km
in leg | 6.93
6.93
6.93
7.30
12.59
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.19
8.10
1.2.35
6.17
7.10
8.19
8.19
8.19
8.19
8.19
8.10
1.2.35
6.17
7.10
8.19
8.19
8.19
8.19
8.19
8.10
1.2.35
8.10
1.2.35
8.10
1.2.35
8.10
8.10
1.2.35
8.10
1.2.35
8.10
8.10
1.2.35
8.10
8.10
1.2.35
8.10
1.2.35
8.10
1.2.35
1.3.35
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | | tion
longitude | 092 31 W 092 34 W 092 34 W 092 32 W 092 32 W 092 15 W 092 15 W 091 57 W 091 57 W 091 12 W 091 12 W 091 11 W 091 11 W 091 12 W 091 12 W 091 12 W 091 12 W 091 13 W 091 14 W 091 37 | | e posi | 13 11 n
12 53 n
12 53 n
12 48 n
12 48 n
12 52 n
13 12 n
13 12 n
13 12 n
13 14 15 n
13 17 n
13 18 | | course (deg.) | 180
1180
1180
1180
1155
1060
0060
0060
0060
0060
0060
006 | | beauf. | | | position vert. | 00000000000000000000000000000000000000 | | sun pc | 01
07
07
07
07
07
07
07
07 | | codes
t rec. | 222
222
222
223
223
224
225
227
227
227
227
227
227
227
227
227 | | erver c | 002
002
002
003
003
003
003
003
003
003 | | obse
left | 84417222452525252525254555555555555555555 | | speed
km/hr | 18.89
18.89
18.89
18.89
18.89
18.89
18.52
18.52
18.52
19.63
19.63
19.63 | | date | 870827
870827
870827
870827
870827
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870828
870905
870905
870905
870905
870905
870905
870905
870905
870905 | | leg | 00000000000000000000000000000000000000 | | series | 00 00 00 00 00 00 00 00 00 00 00 00 00 | Table 2. (continued) | km
in leg | $\alpha \alpha$ | 3.27
6.93
6.61 | 23.7 | നന | 5.7 | ω 4 | | ٠,, ٠ | 4 (1) | (ים ניי | W 01 | 41. | 10, | 7 7 | , v o | 9 | | , - | | _ `` ; | | | ٠.٠ | : - : : | ~ ~. | `` | | | o 4. | |---------------------------|-----------------|----------------------|----------------|-------|----------|--------|--------------|------------|------------|------------|------|----------|------------|------------|----------|----------|-------|----------|----------|--------|--------|----------------|----------|-----------------------|------|------|------------|----------|------------| | tion
longitude | 094 03 w | 094 13 w | 094 26 w | | 094 42 w | | | 095 01 w | | 095 16 w | | 095 31 W | 7 | | 097 48 w | | | M 95 L60 | | | 00 | ⊃
α | 098 24 w | 098 32 w | | | 098 51 w | • | 099 02 W | | position
latitude long | 13 56 n | 13 58 n | 14 00 p | | 14 01 n | | | 14 00 n | | 14 00 n | | 10 At | 7 | | 14 16 n | Н | | 14 17 n | | | 7 | 14 18 n | 14 19 n | 14 18 n | | | 14 18 n | | 14 18 n | | course (deg.) | 273 | 273
273 | 273 | 273 | 273 | 273 | 273 | 275
275 | 275
275 | 280
280 | 280 | 280 | 280 | 280
280 | 280 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 276 | 276
276 | | beauf.
no. | 4 4 | ਹ ਾ ਹਾਂ ਵ | + 4 4 | 44 | 44 | ተ ເດ ເ | n m | ოო | ოო | m m | നന | mm | റന | 7 7 | 20 | 0 | C1 C1 | m | n m | mm | , en (| n w | m | n n | ന ന | m n | י נייז ני | nn | ന ന | | position vert. | | | | 03 | | | | | | 02 | 0.2 | 02 | | 03
03 | 03 | | 03 | 03 | | 000 | 02 | | | | 12 | 122 | 777 | 77 | 12
01 | | sun po | | | | 0.7 | - | | | | | 12 | 12 | 12 | | 12
12 | | | 900 | | | 90 | | | | | 90 | 07 | 60 | 11 | 11 | | codes | 51 | 22 | 220 | 0 4 5 | 67 | 220 | 05 | 22
68 | 51
51 | 12 | 000 | 787 | 05 | 51
04 | 89
12 | 67 | 67 | 22 | 22
05 | 05 | 67 | 89
98
98 | 04 | 5
7
7
7
7 | 05 | 22 | 0.00 | 04
68 | 51 | | observer co | 04 | 22 | 05/ | 22.5 | 22 | 05 | 27 | 05
51 | 04 | 68 | 67 | 000 | 67 | 04
68 | 51 | 05 | 05 | 67 | 67
22 | 22 | 0.5 | 51 | 181 | 19 | 22 | 67 | 7 8 9 | 68
51 | 04
05 | | obse
left | 68 | 67 | 22
70
71 | 188 | 002 | 27 | 22 | 67
04 | 68
68 | 0.4 | 22 | 200 | 05
22 | 51 | 04 | 22 | 22 | 000 | 05
67 | 67 | 22 | 0.04 | 21 | 05 | 67 | 0.0 | 51 | 51
04 | 68
22 | | speed
km/hr | 0.0 | 19.63 | ninin | u | | က် လေ | က် က် | 6.6 | 6.6 | 6 | | ် ဖွဲ့ င | | ထ်ထ | ထင် | | 00 | | | 00 | | ത് ത | , סי | <u>ი</u> თ | 60 | 500 | י שי | م م | 60 | | date | 100 | 870906 | 90 | 900 | 000 | 900 | 60 /
60 / | 607 | 607 | 007 | 000 | 200 | 60
709 | 907 | 200 | 200 | 709 | 200 | 907 | 709 | 502 | 200 | 502 | 50Z | 2007 | 7007 | 507 | 502 | 202 | | leg | 01 | 03 | 030 | 000 | 0.4 | 90 | 07 | 10 | 11 | 010 | 030 | 004 | 00 | 80 | 10 | 07
03 | 03 | 0.0 | 90 | 800 | 10 | 11 | 01 | 02 | 000 | 000 | 0 0 | 07 | 01
02 | | series | 05 | 000 | 990 | 000 | 000 | 07 | 07 | 07 | 07 | . 8 8 | 800 | 0 0 0 | 8 8
0 0 | 800 | 08 | 01
01 | 01 | 01 | 01 | 010 | 01 | 01 | 02 | 03 | 03 | 03 | n e
0 0 | 03
03 | 04
04 |
22.05 2.05 2.06 km in leg 3 3 3 3 3 latitude longitude 333 3 3 3 3 ≯ 3 ⋧ 40 43 52 58 00 03 22 05 60 27 12 59 90 660 660 100 101 101 101 102 102 102 103 103 position $101 \\ 101$ 101 101 101 104 108 g цц дд ¤ ¤ ¤ ď 22 44 28 05 44 30 course (deg.) beauf. sun position horz. vert. 005 005 005 005 005 005 005 005 005 322222 002 002 002 002 002 002 002 002 observer codes left right rec speed km/hr 17.59 117.59 118.155 118.155 118.155 118.155 117.78 118.89 870907 870907 870907 870907 870907 870907 870908 870908 870908 870908 870908 870909 870909 870909 870909 870909 870909 870909 870909 870909 870909 870909 870909 870909 date leg series Table 2. (continued) 5.57 6.16 6.16 6.16 6.16 6.16 6.45 km in leg ≥ ≥ position latitude longitude 32 d d 4 4 ¤ ¤ ¤ conrse beauf. sun position horz. vert. 10 09 09 01 01 06 06 07 07 observer codes left right rec 17.59 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870912 870913 870913 870913 870913 870913 870913 870913 870913 870913 870913 870913 870914 870914 870914 870914 870914 870914 870914 date series Table 2. (continued) | ! | | | | | | | |---|--
--|--|--|--|----------------------| | km
in leg | | 10.1.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.0 | | | | | | ition
longitude | 113 02 W | 113 07 w
113 12 w
113 31 w | 115 52 w | 116 06 w | 116 38 w | | | e posi | 03 27 n | 03 27 n
03 24 n
03 14 n | 02 18 n | 02 16 n
02 11 n | 02 03 n
01 47 n
01 47 n | | | cours
(deg. | 062
062
062
243
243
243 | 00000000000000000000000000000000000000 | 22222222222222222222222222222222222222 | 22222222222222222222222222222222222222 | 230
230
230
230
230
230
230 | 230
230
230 | | beauf. | 44744444 |) N N N N N 4 4 4 4 6 6 6 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ተቀቀቀቀ ነርር ነር ነ | U N N N N A 4 4 4 4 4 | 444 | | position vert. | 00
01
01
12
12
12
12
12
12 | 001122 | 6 | 03
02
01
01 | 112
112
112
01
01 | 01 | | sun por | 00000111
110001112 | 001 | 0.3 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00
07
112
123
002
01 | 01 | | codes | 22
68
68
04
04
67
67 | 022
022
04
05
05
05
05 | 67
67
67
68
67
67
67
67 | 222
227
247
200
200
200
200
200
200
200
200
200
20 | 68
68
68
68
68
68 | 67
05
22 | | server cot | 67
51
51
68
68
68
68
68 | 00000000000000000000000000000000000000 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 002
004
007
007 | 000000000000000000000000000000000000000 | 22
67
05 | | obse
left | 004
004
005
005
005
005 | 222
222
222
223
224
227
227
227 | 77 77 77 77 77 77 77 77 77 77 77 77 77 | 002
002
003
003
003
003
003
003
003
003 | 002
002
004
004
011
022
022 | 05
22
67 | | speed
km/hr | 2000000000 | 15.37
16.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
18.71
20.00 | 00000000 | | | | | date | 7091 | 870914
870914
870914
870914
870914
870914
870914
870914
870914
870914 | 7091
7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091
7091
7091 | 7091
7091
7091 | | leg | 111
114
117
118
118 | 22
22
22
22
23
20
00
00
00
00
00
00
00
00
00
00
00
00 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000011008200 | 03 | | series | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 05
05
05 | | km
in leg | | | | | 11.66
4.66
2.59
2.59
3.77
3.78 | | |-------------------|---|---|--|--|--|--| | tion
longitude | 117 44 W | 118 04 w | 117 30 w | 117 07 w
117 03 w | 116 50 w | 115 00 w | | posit
latitude | 01 24 n | 01 13 n
01 18 n | 01 14 n | 01 21 n
01 22 n | 01 25 n | 01 43 n | | course | 230
230
200
200
200
200
200
200 | 080
080
080
080
080
090
110 | 1110
1110
083
083
083
083 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0855
0855
081
081
081
081 | | beauf. |
 | • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ነ ቀቀቀቀቀኮና | 4 የ ነን ነ | ᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬ | ਦਾ ਦਾ ਦਾ ਦਾ ਦਾ ਦਾ ਦਾ | | position vert. | 02 03 | 0000 | 02
02
12
12 | 12
12
12
13 | 005
005
005
005
005
005
005 | 033
033
01
01 | | sun po | 01
02
02 | 1122 | 11
12
13
13 | | 900000 | 1111111 | | codes
t rec. | 67
68
51
51
04
05
67 | 00001488
00001488 | 020
021
028
029
029
029 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 04
68
67
22
67
67
67
68 | 222258
222258
23445
238145 | | erver
righ | 222
10004
2000
2000
2000
2000 | 000
000
000
000
000
000
000
000
000
00 | 00000000000000000000000000000000000000 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00002000000000000000000000000000000000 | | obs. | 004
004
005
005
005 | 002
002
002
002
002 | 67
67
67
67
67 | 22
67
05
68
51
51 | 00000000000000000000000000000000000000 | 51
67
67
68
68
67
68 | | speed
km/hr | 7.00
7.00
7.00
7.00
7.00
7.00 | 12.96
12.96
12.96
12.96 | , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 00000000 | ກ່ານການການກ່ວ | Nuddududud | | date | 7091
7091
7091
7091
7091
7091 | 7001
7001
7001
7001
7001 | 7091
7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091
7091 | 870916
870916
870916
870916
870916
870916
870916
870916 | 7091
7091
7091
7091
7091
7091
7091
7091 | | leg | 00
00
00
01
01
02 | 000000000000000000000000000000000000000 | 000
000
110
120
120 | 13
16
17
17
20
20 | 220
220
230
330
310 | 32
001
002
002
003
003
003 | | series | 055
055
055
066
066 | 000000000000000000000000000000000000000 | 70000000000000000000000000000000000000 | 0000000000 | 00000000000 | 00
01
01
01
01
01
02 | Table 2. (continued) | 1 | t · | | | | | | | | |-----------------|---|--|---|--------------------------------------|---|--|---|--| | km
in leg | 030900 | 10.28
1.028
1.031
2.07
2.07
5.33 | | n n o o c | 10486000 | 0,0,0,0,4,00 | 14004WH- | 1427274 | | tude | 1 00 | ≥ ≥ ∞ | ≯ | м | | 7 w X | ъ ъ ъ | | | tion | 114 2 | 4 4 | 113 4 | 111 4 | | 111 0 | 110 3 | 10 1 | | positatitude | 01 37 n | 1 45 | 1 52 n | 2 08 n | | 2 07 n
2 08 n | 2 11 n | 37 | | ; se | | • • | 0 | | | 0 0 | 0 0 | 0 | | cour. | 070
070
070
070 | 070
070
070
070
070 | 070000000000000000000000000000000000000 | 070 | 8888888 | 20000000000000000000000000000000000000 | 44800 | 175 | | beauf. |
 444444 | ਾ ਪ ਖਾ ਖਾ ਖਾ ਖਾ ਖਾ ਖਾ ਖਾ | ' ଫ ଫ ଫ ଫ ଫ | ਰਾ ਹਾ ਹਾ ਹਾ | 44707070 | א לא לא לא לא לא לא | ጋርተቀቀቀቀ | ろろみみよみ | | sition
vert. | 01
01
12
12 | 12
12
12
01
01 | | 03
03
02 | 222222 | 1122221112 | 112
112
01
01 | 005
005
005
005 | | sun pos | 0011122112 | 0000 115
0000 115 | | 122 | 777777 | | 900000 | 66666 | | codes
t rec. | 22
67
68
68
68 | 67
67
67
67
67
67
67
67 | 622
622
622
622
622
622
622 | 05
68
04
05 | 22
67
67
67
67 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22
22
22
05
67
68 | | erver corright | 00
00
00
04
00
04
04 | 00022200000
001220000000 | 64
68
51
52
52 | 67
04
51
67 | 222222 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | 00
67
00
04 | | obse | 67
05
22
51
51 | 000000000000000000000000000000000000000 | 668
678
678
678 | 22
04
51
68
22 | 05
05
05
05
05 | 000
004
000
000
000 | 000
000
000
000
000
000
000
000
000
00 | 22
05
05
22
51 | | speed
km/hr | 14466 | 18.15
17.78
17.78
17.78
17.78 | 7. | 20000 | 0000000 | 200000000000000000000000000000000000000 | 0000000 | 000000 | | date | 7091
7091
7091
7091
7091 | 870917
870917
870917
870917
870917
870917 | 7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091
7091 | 7091
7091
7091
7091
7091
7091 | | leg | 02
03
01
01 | 000000000000000000000000000000000000000 | 1111111
1284111 | 17
02
03
04 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00
00
00
00
00
00
00 | | series | 000000000000000000000000000000000000000 | * | 444444 | 000
011
011
01 | 000000000000000000000000000000000000000 | 00000011 | 000000000000000000000000000000000000000 | 000000 | | (continued) | |-------------| | 5 | | Table | | km
in leg | 0.97 | ສຸແ | 90. | w. 1 | ٠. A | ? - | 2 | .S. | ٦, | o, n | ٠, | , c | | ٥. | œ۱ | ۰, | -1 ~ | 0 | ထု၊ | ی د | ? =! | ω. | ຕຸມ | ٠٠ | 40. | ı. | rύι | ហុធ | יו ני | 1 | w. | 7 | - | 9 | 5 4 | | <u>ښ</u> د | ניו ני | φ. | | |---------------------|----------------------|-----------|---------|------------------|----------|-------------|------|-----|-----|------|-----|----------------|-------|----------|------|-------------|------|-----|-----|------------------|--|----------|-----|--------|--------|----------|-----|------------------|------------|-------|----------|---------|-------|-----|-----|----------|------------|------------|-----|------------| | tion
longitude | 110 19 w
110 20 w | 110 11 54 | i
i | | | 110 12 w | | | | | | | 10 19 | 109 56 w | | | | | | | | 109 29 W | | | 09 21 | 109 19 w | | | | | 109 02 w | | | | | 108 44 W | | | | 107 18 w | | posit
latitude l | 00 27 n
00 25 n | . 21 00 | 11 11 1 | | | 00.04 s | 1 | | | | | | 38 8 | 02 02 s | | | | | | | | 01 52 s | | | 1 48 s | 01 47 s | | | | | 01 39 s | | | | | 01 26 s | | | | 00 43 s | | course (deg.) | 175 | | | $\frac{172}{12}$ | 172 | | | 172 | 172 | 172 | 7.7 | 172 | | | 064 | 400 | 064 | 064 | 064 | 0 C | 020 | | 058 | 20 C | 058 | 058 | 058 | 0
0
0
0 | 0.58 | 058 | 058 | 0.58 | 052 | 052 | 052 | 052 | 052 | 052 | 064 | 065 | | beauf. | 44 | 4. 4 | 4 | 4 | 4' 5 | t 4 | · 🕁 | 4 | ⋪. | ₹. | # < | 1 4 | 'n | 3 | m· | 4. < | r < | 4 | ❤ ' | 4 ″ √ | F 4 | æ | ന | יז ניי | ı, eri | 4 | ₩. | 4, 4 | 하 덕 | · •‡• | 4. | ব' ব | 4 | 4. | ♥ < | 7 | ❤ (| m m | mί | 9 09 | | position . vert. | 02
01 | T 5 | 10 | 15 | 27. | 7 5 | 50 | 01 | 01 | N (0 | 9 6 | 70 | | 03 | 05 | 70 | | | į | 50 | 01 | 0.1 | | , | 4 5 | 12 | 12 | 7.7 | 717 | 01 | 01 | 00 | 05 | 02 | 000 | 000 | 05 | 7 C | | | | sun po | 60 | 0 F | 101 | 10 | 7. | 3 F | 03 | 03 | 60 | 600 | 90 | 20 | | 01 | 01 | Ťô | | | , | 0 | 01 | TO | | 6 | 12 | 12 | 12 | 12 | /0 | 07 | 0.7 | 07 | 07 | 0.7 | 07 | 07 | 07 | 80 | | | | codes
t rec. | 04 | 21 | 0.5 | 29 | 27 | , c, | 20 | 67 | 22 | 22 | ວເ | / X | 22 | 0.5 | Ce i | <u>_</u> 10 | 0 C | 67 | 29 | | 7 7 | 04 | 04 | ဆင္ | 0 0 | 22 | 29 | 02 | 77 | 20 | 04 | 68
- | 51 | 05 | 22 | 05 | 22 | 68
51 | 21 | 22.22 | | server c
t right | 51 | 80 | 22 | 0.5 | 4.0 | 0
0
0 | 200 | 022 | 29 | 67 | N C | 0 0 | 67 | 29 | 0.0 | (A) | - E | 22 | 22 | 40 | # 00
O VO | 89 | 89 | Ç, | 22 | 0.5 | 22 | 29 | 2 C | 9 60 | 8 8 9 | 120 | 0 0 | 29 | 02 | 279 | 05 | 51
04 | 0.4 | 67
67 | | obse
left | 68 | 4 4 | 67 | 22 | 9 2 | 7 N | 2.0 | 22 | 02 | 0 | 9 | 27 | 5.5 | 22 | 29 | 0 0 | 7 5 | 05 | 0.5 | ဆမ | 10
10
10
10
10
10
10
10
10
10
10
10
10 | 51 | 51 | 4, 4 | # C | 67 | 05 | 23 | , i | 5.0 | 51 | 04 | 0 89 | 22 | 67 | 22 | 29 | 04 | 89 | 05 | | speed
km/hr | 19.45 | <u>.</u> | ο α | | <u>.</u> | | | | ė | ė, | ٠ | ، ف | | | ė. | ė, | ی ف | . 6 | ó | ن | ی ن | . 6 | ė. | Ġ. | ہ ہ | . 6 | 6 | ٠ ف | ی ن | ی د | φ. | ب ف | | 6 | ٠, | | ė, | | 6 | ٠: | | date | 870919
870919 | 709 | 207 | 60. | 709 | 709 | 200 | 200 | 709 | 709 | 709 | 709 | 200 | 200 | 709 | 709 | 709 | 709 | 709 | 709 | 707 | 200 | 709 | 709 | 700 | 200 | 709 | 709 | 709 | 700 | 709 | 709 | 709 | 709 | 709 | 700 | 709 | 709
709 | 709 | 709
709 | | leg | 01 | 02 | 07 | 03 | 04 | 0.5 | J C | 0.0 | 04 | 0.5 | 90 | 00 | 9 5 | 010 | 02 | 03 | 0 Q | 0 0 | 07 | 08 | 0 - | 7 7 | 12 | 13 | 14 | 000 | 03 | 04 | 05 | 00 | 01 | 000 | 0.0 | 05 | 90 | 080 | 60 | 110 | 12 | 070 | | series | 02 | 03 | 0.04 | 0 0 | 04 | 0 Q | C 14 | 000 | 0 0 | 0.5 | 05 | 0.5 | 60 | 0.0 | 01 | 01 | 01 | 7. | 010 | 01 | 01 | 01 | 01 | 01 | 01 | 200 | 020 | 02 | 000 | 700 | 03 | 03 | 50 CO | 03 | 03 | 03 | 03 | 03 | 03 | 01 | Table 2. (continued) | ! | | | |-------------------------|--|---------------| | km
in leg | | 51.23 | | osition
de longitude
 106 57 W
106 56 W
106 58 W
106 53 W
106 49 W
104 26 W
104 22 W
103 48 W
103 48 W
103 30 W
103 30 W
103 30 W
103 17 W
103 17 W | | | e pos: | 00 00 28 8 00 00 30 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | course (deg. | 01 00000000000000000000000000000000000 | 064
064 | | beauf. | | നന | | position vert. | 0 | 03 | | sun po | | 10 | | codes | 0.00 | 22
51 | | erver corright | 05/000014445/005/1448/05/05/184058880044844055/05/05/148885 | 6 /
0 4 | | obse
left | 0,000,000,000,000,000,000,000,000,00 | 0
68
68 | | speed
km/hr | 11.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | | date | 870921
870921
870921
870921
870921
870921
870921
870921
870921
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922
870922 | 60/
209 | | leg | 004
007
007
007
007
007
007
007
007
007 | | | series | 001
001
002
002
003
003
003
003
003
003
003
003 | 56
0 | Table 2. (continued) | 1 | ļ | | | | | | | | |---------------------------|--------------------------------------|--------------------------------------|---|---|--|--|--|---| | km
in leg | | | | | | | 6 1 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | position
ude longitude | 103 00 W
101 36 W | 101 23 w | 101 12 w | 100 38 W | 00 20 | 098 22 м | 097 54 W
097 50 W
097 43 W | 097 12 W | | posi
latitude | 01 17 n
02 03 n | 02 09 n
02 17 n | 02 18 n
02 29 n | 02 35 n | a 2 | 03 27 n | 03 47 n
03 50 n
03 55 n | 04 20 n | | course | | la la m m la ' | വധയാവ | 10 10 10 1 | | บององกทเ | 00000000000000000000000000000000000000 | այայայայայայա լ | | beauf. | m a a a a a a a | m w 4 m w | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ተ | # m m m m m | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ | <i>ਰਾ ਚਾ ਚਾ ਚਾ ਚਾ ਚਾ</i> | | position vert. | 03 | 01
02
02 | | 2222 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 000 000 | 000
000
001
100
110
110
110
110
110
110 | 112
112
01
01 | | sun pos
horz. | 12 | 11
02
02 | | 12
06
06 | 00
00
00
00
00
00
00 | 07
07
07
01 | 70000000000000000000000000000000000000 | 12
07
07
07 | | codes
t rec. | 51
67
12
22
22
23 | 67
04
68
51 | 51
51
51
51 | 04
68
67 | 22
70
22
51 | 68
04
04
04
04
04
04 | 002
002
002
002
002
002
002 | 67
05
05
04
22 | | erver coright | 04
222
22
70
70
22 | 22
68
51
04 | 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2218 | 70
70
70
60
60
60 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 00000000000000000000000000000000000000 | 05
05
05
05
05
05
05 | | obse | 68
04
02
22
67
70 | 70
51
04
68 | 68
68
67
68 | 51
04
70 | 67
22
67
64 | 51
22
68
68
68 | 022
022
027
027
028
029 | 22
05
22
68
05 | | speed
km/hr | 0.000000 | 6.888
6.444 | 1.1.1.7 | 7.8.6 | , o o o o v
o o o o o v | 0.0000000000000000000000000000000000000 | 11111111111111111111111111111111111111 | | | date | 7092
7092
7092
7092
7092 | 7092
7092
7092
7092
7092 | 7092
7092
7092
7092
7092 | 7092
7092
7092 | 7092
7092
7092
7092
7092 | 70922709270927092709270927092 | 870924
870924
870924
870924
870924
870924
870924
870924 | 7092
7092
7092
7092
7092 | | leg | 01
02
03
04
05 | 07
02
03
01 | 02
03
03 | 001 | 0000
000
000
000 | 000000000000000000000000000000000000000 | 002
000
000
000
000
000
000 | 05
00
00
00
00
01 | | series | 10
01
01
01
01
01 | 01
02
03
03 | 03
04
05
05 | 000000000000000000000000000000000000000 | 07
07
07
07 | 07
07
07
01
01 | 00000000000000000 | 000000
0000000000000000000000000000000 | | \C\C:\ | כטעב | | |--------|------|--| | 2012 | | | | c | | | | 7,7,7 | なひして | | | g | 30
51
57 | æ | ı⊢c | v W t | - W F | 100 | ם פי ת | 2-1-0 | ~ |) 4 (| o 4 | 40 | ی ن | ,
,
, | 9 CO (| 0.0 | o < + 0 | ກພ | നയ | o (~ 1) | 0 m | ₩ ~ | ۰. | \O 0 | n m | (C | | \ C # | 3.00 | |------------------|----------------------------|---------------|---------|---------|----------|---------|----------|---------|------|------------------|--|------------|----------|-------------|--------------|--------------------|-----------------------|------|-------------|---------|------|------------|------|---------|---------|----------------|---------|--------------------|------| | km
in le | 6.9 | ٦., | | | 7 00 - | 4.4 | ,, ,, , | | 0,1 | , 62, | 7) 00 ' | נא נה | 7.1 | inic | 4 (4) | ~ oc | | u H | C (C | 0 | 00 | Nu | 0 | w c | 20 | 0 % |) 4. C | 2 4 R | 7. | | ion
ongitude | | 16 59 W | 5 06 W | 4 58 W | 4 OT | 4 43 W | | 4 25 W |) | 4 16 w | | 4 06 w | | | 42 | 3 47 w
3 40 w | 2 | | 37 | 32 K | 23 | 1 22 1 | | 1 16 w | 1 12 w | 1 10 | 08 | 1 08 W | ñ | | 1,4 |
 | 60 | 60 | 60 | | 60 | | 60 | | 60 | | 60 | | | 6 | 660 | ١ | | σ | 000 | ת | Ö | | 60 | 09. | | 60 | 091 |) | | pos
latitude | | 04 28 n | 05 28 n | 05 33 n | 000 | 05 34 n | | 05 43 n | 2 | 05 49 n | 1 | 05 55 n | | | 6 11 | 06 12 n
06 13 n | 1 | | 7 24 | 07 25 n | 97 / | 07 38 n | 2 | 07 42 n | 07 44 n | 7 45 | 7 47 | 07 46 n
07 52 n | 4 | | course
(deg.) | 055
055
055 | beauf. | 444 | 4 K | · M r | n m c | n m m | nn | n 01 C | 9 C7 C | mm |) M (| m m (| ന ന | നന |) M M | n m i | ന ന |) M (| n m | m c | 100 | 7 7 | m m | n m | mr | u m | m m | | n ~ ~ | 10 | | osition
vert. | | | 03 | S | 03 | 02 | 01 | 01 | | | (| 12 | 01 | 01 | 0.2 | 000 | 0.5 | | | ç | 03 | 020 | 02 | 02 | 020 | 01 | 01 | 01 | 12 | | sun pohorz. | | | 01 | 5 | 0.0 | 01 | 01 | 01 | | | į. | 07
06 | 07 | 07 | 07 | 07 | 0.7 | | | 5 | 01 | 01 | 01 | 01 | 01 | 01 | 000 | 000 | 12 | | codes
t rec. | 05
67
22 | 68
51 | 05 | 22 | 68
51 | 21 | 005 | 67 | 05 | 4.0 | , 60
40
40
40
40
40
40
40
40
40
40
40
40
40 | 68
51 | 22
02 | 67 | 10 (
10 (| 05
67 | 51 | 8 8 | 51 | 27 | 04 | 68
05 | 22 | 22 | 29 | 05
68 | 5.1. | 04 | 0.5 | | erver cright | 22
05
67 | 51
04 | 22 | 67 | 1 C C | 0.0 | 220 | 05 | 22 | 68 | 51 | 51
04 | 67 | 05 | 22.0 | 0.22 | 886 | 0.4 | 51
04 | 0.4 | 68 | 51 | 0.5 | 05 | 22 | 67
51 | 51 | 04
68 | 22 | | obse
left | 67
22
05 | 04
68 | 67 | 02 | 40 | 68 | L9
22 | 22 | 67 | 51 | 1 4 6 | 04
68 | 05 | 22 | 67 | 22 | 04 | 51 | သ ထ | 68 | 51 | 22 | 29 | 67 | 05 | 22
04 | 04 | 68
51 | 67 | | speed
km/hr | 18.89
18.89
18.89 | 0.0
0.0 | 7.0 | | 000 | 0.0 | 000 | 0.5 | 0.7 | H- | | l.4
l.4 | 1.4 | 1.4 | .8. | 1.4 | 4. | | 1.0
3.4 | 0.3 | 8.1 | 40 | 0 | w w | ا لنا ز | ന്ധ | (C) (C) | (W W) | (M | | date | 870924
870924
870924 | 7097
7093 | 7092 | 2607 | 7097 | 2607 | 2007 | 2607 | 2607 | 7092 | 2007 | 2607 | 2607 | 2607 | 7092 | 7092
7092 | 7092 | 7092 | 2607 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092
7092 | 7092 | 2607 | 7092 | | leg | 02
03
04 | 0.5 | 01 | 010 | 000 | 01 | 03 | 05 | 02 | 04 | 000 | 0T
03 | 03 | 0.00 | 010 | 010 | 020 | 0.4 | 0.5 | 010 | 02 | 03 | 05 | 01 | 01 | 01 | 01 | 010 | 03 | | series | 05
05
05 | 02 | 01 | 000 | 0 0 0 | 0 0 4 | 400 | 004 | 05 | 05 | 000 | 90 | 90 | 90 | 07 | 8 6
0 0 | 60 | 60 | 0
0
1 | 020 | 03 | 03
04 | 0.4 | 0.5 | 90 | 07 | 80 | 10 | 10 | Table 2. (continued) | km
in leg | 2.72
5.42
1.08
13.36 | S (C) (C) | 5.56 | 3.09 | 3.26 | 5.63 | 5.93 | 4.74 | 6.29 | 1.85 | 0.62
0.62 | 6.48 | 9.50 | 5.56 | 1.54
0.62 | 5.78 | 1.54 | 0.62 | 7.74 | 7.04 | 4.93
8.80 | 1.76 | 1.70 | 6.45 | 5.05 | 1.68 | |---------------------------|--|----------------------|-------|----------------|----------------------|----------------------|---|-------|----------|--------------|--------------|----------|--------------|-------------------|--------------|----------------|--------------------|-----------------------|------------------|------------|--------------|------------|----------------|------------|----------|------| | position
ude longitude | 90 42 | 088 51 w | 88 46 | 9 | 088 39 w
088 37 w | | 088 35 w
088 31 w | 88 30 | 088 26 w | 088 25 w | 088 18 w | | | 088 10 w | 80 8 | 088 06 w | | 67 03 | 085 02 W | | 084 46 w | | 084 38 W | | 084 30 w | | | latit | 8 00 | 08 50 n | 8 45 | , | 08 33 n
08 30 n | | 08 15 n
08 12 n | 8 11 | 08 07 n | 08 04 n | 07 51 n | | | 07 37 n | 7 33 | 07 30 n | | r
C | 05 01 n | | 04.56 n | , ,
, , | 04 54 n | | 04 53 n | | | course | 058
058
058
057 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 152 | 152 | 152 | 152 | $\frac{152}{152}$ | 152 | 152 | 152 | 152 | 106 | 106
106 | 106 | 106 | 106
106 | 106
106 | 112 | 112 | |
beauf. | 99999 | 7 — ~ | · | H H | н н , | | 10 - | 00 |) H (| ⊣ ← · | н н с | 200 | 20 | | ⊢ ← | 1 1 | 1 - 1 - | r | 3 6 | ന ന | K 4 | 4 | 4 4 | N N | សស | 2 | | position
vert. | 010
010
010
010
010
010
010
010
010
010 | 7 0 | 888 | 02 | 020 | 000 | 122 | , , | 77 | 01 | 01 | | 020 | 02 | 000 |) | 03 | 03 | 70 | | 0.0 | 1 | | | | | | sun pos
horz. | 112
06
06
06 | 10 | | 10 | | | | | 175 | 03 | 03 | ; | 03 | 03
03 | 03 |) | 04 | 0.4 | | | 12 | | | | | | | codes
t rec. | 67
04
04 | 052 | 22 | 05 | 211 | 68
67 | 0 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 89 | 04 | 51 | 22 | 22
05 | 19 | 51
04 | 04
05 | 022 | 67 | 22 | 05 | 67
22 | 05 | 68 | 68
51 | 51 | 05
22 | 22 | | server co | 05
67
68
68 | 07
67 | 200 | 67
51 | 68
68 | 004 | 22 | 04 | 51 | 05 | 67 | 22 | 05
51 | 04
68 | 68 | 222 | 02 | 79 | 5
5
5
7 | 05 | 22 | 51 | 51
04 | 22 | 67 | 0.5 | | obse
left | 22
05
51
51 | 22 | 67 | 55
68
68 | 0 4 | 22 | 57 | 51 | 286 | 04
22 | 025 | 67 | 22
04 | 68
51 | 51 | 67 | 22 | 0.00 | 75
67 | 22
05 | 67 | 04 | 04
68 | 68
05 | 22
67 | 29 | | speed
km/hr | 20.37
21.67
21.67
21.67 | 2.20 | ຸສຸສຸ | 88.0 | 7.7 | 7.7 | 7.7 | 7.7 | 7.9 | 8.5 | ສ
ຜູ້ຜູ້ | 88 | 8.5 | 8.5 | 80 g | 000 | ا تن ہ | 0
0
0
0
0 | ુ ∺ | 4. | 4.5 | 1.1 | ന്ന | 0.3 | 44 | ۲. | | date | 870926
870926
870926
870926 | 7092
7092
7093 | 70927 | 7092 | 7092 | 7092
7092
7092 | 7092 | 7092 | 7092 | 7092
7092 | 7092 | 7092 | 7092
7092 | 7092
7092 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092
7092 | 7092 | 7092 | 7092 | | leg | 02003 | 010 | 001 | 03 | 01 | 000 | 01 | 100 | 03 | 04
01 | 02 | 03 | 04
05 | 06
01 | 01 | 010 | 030 | 0.5 | 010 | 020 | 04 | 02 | 010 | 03 | 01 | 03 | | series | 011111 | 010 | 000 | 030 | 0.5
0.5 | 000 | 000 | 80 | 80 | 80
00 | 00 | 10
10 | 10
10 | 10
11 | 12 | 13.5 | 13 | 7 E F | 01 | 01 | 01 | 00 | 03 | 03 | 04
04 | 04 | Table 2. (continued) | km
in leg | 13.46
13.46
1.68
1.64
6.48 | 1.62
7.13
0.55
1.55 | 0.35
13.14
13.83
13.83
4.15
9.68
6.91 | 6.91
1.04
1.04
0.97
7.78
1.94 | 1.13
6.87
2.62
4.32
6.68 | 5.09
1.27
6.99
2.23
12.72
13.35 | 10.54
10.49
6.04
7.37
7.33
3.50
8.90
8.90 | 0.32
8.33
6.36 | |--------------------------|--|------------------------------|---|---|--|--|--|----------------------| | nde. | 8 | 20 | ≱ ≱
o o | ≰ ≰
5 3 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | * 9 | 8 w 7 | 5 v | | tion
longitud | 084 1
083 4
083 3 | 83 | 081 2 | 081 0
081 0 | 080 5
080 4
080 4
079 4 | 079 3 | 079 1
079 1 | 079 1 | | position
atitude long | 49 n
36 n
32 n | 0 0 | 08 n
13 n | 43 n
46 n | 59 n
00 n
04 n
53 n | 02 n | 30 n
31 n | 46 n
55 n | | se 1 | 04
04
04 | 0 0 | 0 4 | 04 | 04
05
06
06 | 0.7 | 07 07 | 07 | | course (deg.) | 1122 | | 002888888888888888888888888888888888888 | 0288
0288
037
037 | 037
037
037
030
030
030 | 080000000000000000000000000000000000000 | 030000000000000000000000000000000000000 | 030 | | beauf. | N44400 | M M M M M M | n m m m 4 4 4 | 4 . W W W W W W W W | ש ש יא אז אז אז ש ע | m m m m m m n | ມພພພ444TU TO I | ህቀቀቀ | | position vert. | | | 01
01
12
12 | 12 | 02 | 000000000000000000000000000000000000000 | 01
01
12
12
12 | 01 | | sun pc
horz. | | | 02
03
03
13 | 12 07 | 08 | 0000 | 000
000
003
003
003
003 | 07 | | codes
t rec. | 67
51
51
51
51 | 002
002
002
002 | 00
00
00
04
04
07 | 04
04
04
04
04
04 | 67
67
68
67
67 | 22
05
04
05
11
13 | 0022245588
0022405888 | 68
04
51
67 | | erver coright | 214418 | 2000
022
022
022 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000
70000000 | 020002 | 67
00
00
00
00
00
00
00
00
00
00
00
00
00 | 000000000000000000000000000000000000000 | 04
68
05 | | obse
left | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 000
07
07
07
07 | 047
047
088
088
077 | 002
002
002
002
003
003
003 | 67
67
67
67
87 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 51
67
67
67
67
67 | 51
04
22 | | speed
km/hr | 1111044 | 200000- | 2.000.00 | 7.7.04444 | 4400400 | | | 0000 | | date | 70070 | 00000 | 0000000 | | 100000 | | 871001
871001
871001
871001
871001
871001 | 710 | | leg | 000000000000000000000000000000000000000 | 20000 | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0011000 | 01
02
01 | | series | 00000
0000
00000
00000 | 7 8 8 8 8 F | 000000000000000000000000000000000000000 | 000000000 | 00
00
00
00
00
00
00
00 | 000000 | 20000000000000000000000000000000000000 | 4 2 5 0
4 2 5 0 | Table 2. (continued) | } | | | | | | | | | | | |-----------------|---|--|---------------------------------------|--|---|--|--|--|--|----------| | km
in leg | | | | | | | | | 10.80
8.03
0.93
3.23
3.23
0.30
11.85 | | | de | 3 3 | * * * | 3 33 | ≯ ≯ | > > | *** | 1 w
3 w | ***** | 2 0 N | | | ion
ongitude | 79 01 | 79 59
78 58
78 57 | 078 51
078 40
078 39 | 78 41
78 42 | 8 8
4 4 | 78 46
78 46
78 48
78 49
78 50 | 78 51
78 53 | 78 54
78 56
79 00
79 01
79 26
79 27 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |) .
) | | 1 11 | 070 | 07
07
07 | 07
07
07 | 070 | 00 | 00
07
00
70
07 | 0.0 | 000000 | 07 07 07 | , | | posit | 1 n | 1
1
1
1
1
1
1 | 1 n
2 n | 3 n | u 0 | 047
047
04
04
04
04 | 4 n
9 n | 0000000
000000 | а д
В о о | ` | | ati | 08 0 | 08 3
08 3 | 08 3 | 0 8 0 | 07 5
07 5 | 07 4
07 3
07 3
07 3 | 07 2
07 1 | 07 1
07 1
07 1
07 0
05 2
05 2 | 05 1 05 0 | + | | se | | | | | | | - | | | | | . course | 030
030
325
325
114 | 130 | 18777 | | 1911 | 666666 | 10000 | 666666
1000000 | 1992 | 1 | | beauf. | 444660 | 00000 | 0000000 | 0000HH+ | -2 | - M M M M H | * 4 4 4 4 . | # m m m m m m | | 2 | | position vert. | 011 | | | 122 | 12
12
13 | | (| 000 | 00
01
01 | 7 | | sun po | 07
07
07 | | | ###################################### | 122 | | . (| 000 | 6 6 6 6 6
0 0 0 0 | 0 | | codes | 22
05
05
67
67
56 | 55
55
53
53
53
53
53
53
54
54
54
54
54
54
54
54
54
54
54
54
54 | 63
31
64
64 | 23222
23222
23222
23222
23222
2322
232 | 69
69
81
81 | 31
31
52
53
53
53
53
54
54
54
54
54
54
54
54
54
54
54
54
54 | 69 33 22 2
69 33 22 2 | 0 2 2 6 3 9 6 4 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | 669
633
726
736
736
737 | 70 | | erver co | 67
22
22
22
05
05
63 | 220033 | 55
64
31
31
31 | | 5
6
6
7
8
8
9
8
9 | 000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 N N N 0 0 N 0 0 0 N 0 0 0 0 0 0 0 0 0 | D . | | obse
left | 05
67
82
22
22
55 | 52
63
56
56 | 56
31
64
69
69 | 22
23
20
20
20
20
20
20
20
20
20
20
20
20
20 | 31
31
64 | 6 5 5 5 6 6 4 4 5 5 5 5 6 6 5 6 6 6 6 6 | 37
20
37
37
37
37
37
37
37
37
37
37
37
37
37 | W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | #
0 | | speed
km/hr | 101111 | രയയയയ | aaaaaaa | യയയയയയം
പ്പ്പ്പ്പ് | | | ສຸສຸສຸສຸສຸ
ບັນໄປໄປໄປ | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 18.52
18.52
18.52
17.59
17.78
17.78 | | | date | 144444 | 1222 | 22222 | 77777 | 727 | 7777 | 7227 | | 871010
871010
871010
871010
871010
871010 | _ | | leg | 02
03
05
05
05
05 | 01
01
01
02
02 | 03
04
03
03 | 4.00000
4.0000 | 0000
643 | 00
01
01
01
01 | 000
000
002 | 00
00
11
01
01
01 | 000000000000000000000000000000000000000 | 60 | | series | 000000000000000000000000000000000000000 | 000
000
000
040 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 05
06
07
07 | 07
07
07 | 08
08
09
11 | | | 000000000000000000000000000000000000000 | 0.3 | km in leg 3 ≥ 3333 course position (deg.) latitude longitude 3 3 3 3 ₹ 3 ⋧ >⋧ 39 56 58 02 53 39 57 05 04 07 22 35 33 22 081 081 081 082 082 082 082 082 082 084 084 084 084 084 ロロ Ц ¤ ໘ П ппп q п ď ц 44 35 46 35 50 53
56 56 51 44 04 03 03 03 03 03 beauf. \mathcal{O} sun position horz. vert. 000 000 000 001 001 001 01 02 02 02 02 02 03 03 02 02 07 07 07 07 07 08 08 05 05 observer codes left right rec. 177.59 177.78 177.78 177.78 177.78 177.78 177.78 177.78 177.78 177.78 178.33 17 speed km/hr 871010 871010 871010 871010 871010 871010 871010 871010 871011 871012 871012 871012 date series | continued) | |---------------| | $\overline{}$ | | • | | N | | O) | | | | ab | | km
in leg | $\frac{10.70}{2.72}$ | 2.72 | 7.56 | 1.51 | 7.86 | 1.19 | 4.06 | 0.28 | 3.09 | 7.T | 4.25 | 5.56 | 3.52 | 5.28
28 | 0.40 | 6.00 | 4.54 | 6.05 | $\frac{11.19}{2.79}$ | 5.28 | 14.08 | ٠į, | 1.03 | 9.25 | 1.65 | 4.04
202 | 2.96 | 2.07 | 10.07 | 1.50 | 7.49 | 1.20 | 2.99 | 6.59 | 10.37 | 4.13
0.89 | 2.61 | 0.29 | 5.80
4.06 | |---------------------|----------------------|-------|----------|--------|------------------|----------|-------|-------|-------|-------|------------|-------|-------|------------|-------|---------------|------------|-------|----------------------|-------------|------------|-------|------------|-------------|------|-------------|----------|------|----------|----------------|---------------|----------|------------|----------|-----------------|--------------|----------|------------|--------------| | ition
longitude | 084 46 w
084 50 w | 85 02 | 85 19 | П
С | 085 25 W | 85 32 | 85 34 | 85 36 | 87 04 | 87 03 | 87 27 | 87 28 | 87 30 | 87 30 | 67 33 | 30, 78 | 087 33 W | 87 34 | | 87 38 | 087 38 w | 87 40 | | 087 42 w | | 087 43 W | 087 47 W | | 087 51 W | 7 77 | · · | 088 01 w | 88 04 | 088 07 w | 89 28 | 89 35 | 089 51 w | 089 53 w | 89 55 | | pos
latitude | 04 11 n
04 18 n | 4 29 | 4 38 | , | 04 41 D | 4 4 6 | 4 49 | 4 50 | 5 36 | 7 4 0 | 7 t t | 7 33 | 7 41 | 7 43 | 7 | 7 40 | 07 52 n | 7 55 | | 7 | 08 13 n | 8 20 | | 08 28 n | • | 08 34 n | 08 29 n | | 08 26 n | 24
20
20 | 9 | 08 17 n | 8 14 | u 60 80 | 6 58 | 6 51 | 06 30 n | 06 26 n | 6 23 | | course
(deg.) | 310 | 297 | 297 | 297 | 297 | 296 | 294 | 294 | 348 | 348 | 240 | 347 | 347 | 347 | 347 | 24.4
7.4.5 | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 224 | 224 | 224 | 224 | 477 | 224 | 224 | 224 | 224 | 220 | 220
220 | 212 | 212 | 212 | | beauf.
no. | ოო | m n | 7 ❤ | m i | u |) (r |) M | m | 2 | ∾ (| 7 C | N (2) | Н | ,⊣, | | ⊣ ← | -1 F- | 2 | П | | → ← | | ⊢ (| 'nω | m · | m i | n m | 'n | m (| ~) (*) | n m | α, | ٦ ٥ | 40 | ı m | നന | 4. | 44 | 44 | | position
. vert. | 01 | | 02 | 02 | 020 | 70 | 03 | 03 | 01 | 01 | 70 | 03 | | 03 | 200 | 70 | | | | | 12 | | | 12 | ! | č | 010 | 01 | 01 | 0.5 | 020 | 1 | | | | | , | 01 | 01 | | sun pos
horz. | 90 | | 11 | 11 | | ⊣ | 11 | 11 | 60 | 60 | 60 | 03 | ! | 03 | 03 | O
4 | | | | | 0 0 | | | 80 | | , | 0.0 | 01 | 01 | 01 | 010 | ! | | | | | (| 5 O | 10
10 | | codes | 31 | 56 | 56 | 56 | 52 | 00 | 31 | 31 | 63 | 26 | 7.5 | 0 Q | 69 | 69 | 31 | ე
ე | 5 4 | 64 | 69 | 31 | 25 th | 63 | 63 | 200 | 56 | 64 | 64
4 | 69 | 31 | 22 | 9 69 | 220 | 200 | # o | 56 | 55 | 56 | 56 | 55 | | erver o | 69 | 63 | 63 | 63 | 2
2
2
3 | 0 4 | 69 | 69 | 52 | 63 | ۍ
کې د | 31 | 64 | 64 | 69 | 5
10
11 | 2,0 | 31 | 64 | 69 | 20 00 | 52 | 52 | 6
63 | 63 | 31 | 31 | 64 | 69 | 0
1
1 | 0 LO | 63 | 63 | 7 7 | 63 | ม
ข | 63 | 63
63 | 56
55 | | obse
left | 64 | 52 | 55
55 | 55 | 63 | 9 6 | 64 | 64 | 26 | 55 | 40 | n 0 | 31 | 31 | 64 | 63 | 90 | 9 | 31 | 64 | 0 4
7 7 | 26 | 56 | 2
2
2 | 55 | 69 | 0 0 | 31 | 64 | 63 | 5
5
6 | 22 | 55 | ט
ער | 55 | 63 | 25 | 22
22 | 63
56 | | speed
km/hr | 1.3 | | | | ٥,٠ | ~ .
 | . 4 | | ×. | ~: | ຸດ | | | 7 | Ξ. | | | | | ۳. | | | 6.0 | 1,00 | | 9.6 | ω.
 | | 7.1 | 2,1 | | | <u>ر</u> د | | | | | <u>-</u> - | 17.41 | | date | 1017 | 7101 | 101 | 1101 | 7101 | 10T/ | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 71017 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | /101/
7101 | 7101 | 7101 | / TOT/ | $\frac{1}{101}$ | 7101 | 7101 | 7101 | 871015 | | leg | 15 | 01 | 01 | 02 | 03 | 0.4 | 1 F | 02 | 01 | 01 | 01 | 0.0 | 07 | 02 | 03 | 4, | 50 | 50 | 03 | 04 | 010 | 010 | 02 | 03 | 0.5 | 90 | 07 | 000 | 01 | 02 | 03 | 0.5 | 06 | 0 0 | 01 | 05 | 01 | 03 | 010 | | series | 01 | 03 | 0 0 | 0.5 | 0.5 | 0 o | 00 | 07 | 01 | 02 | 03 | T0 | 0.0 | 0.0 | 0.5 | 07 | m v | 0 C | 0 4 | 0.4 | 050 | 90 | 90 | 900 | 90 | 90 | 9 0 | 900 | 07 | 20 | 07 | 07 | 07 | 7.0 | 000 | 01 | 03 | 0 0
0 | 400 | Table 2. (continued) | 1 1 | | | |---------------------------|--|--------| | km
in leg | 8 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 | 3 | | position
ude longitude | 090 090 090 090 090 090 090 090 090 090 | i
I | | latit | 06 19 n
06 19 n
06 13 n
06 10 n
06 13 n
07 15 n
07 28 n
07 28 n
07 28 n
07 28 n
09 25 26 n
09 27 n
09 28 8 n
00 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1
3 | | course (deg.) | 2220
2220
2220
2220
2220
2220
2220
222 | 218 | | beauf. | ####W\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | i W | | position
vert. | 000 000 000 000 000 000 000 000 000 00 | 0 | | sun | 1172
0033
0033
0047
0047
008
008
008 | 0.0 | | codes | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 69 | | server t | $\begin{array}{c} \bullet & $ | 9 | | op
lef | $\begin{matrix} & & & & & & & & & & & & & & & & & & &$ | | | speed
km/hr | | | | date |
871015
871015
871015
871015
871016
871016
871016
871016
871016
871016
871016
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017
871017 | 7101 | | leg | 00000000000000000000000000000000000000 | 02 | | series | 00000000000000000000000000000000000000 | 04 | | 1 . } |---------------------|----------------------|------------------|-------|-----------|--------------|-------|-------|-------|-------|--------|---------------|----------------|--------|----------|-------|-------|------|-----|------------------|-------------------|-----|-------|----------|------------|----------|-----|----------|-----------|------|-------|-------------|------|------|---------|-------------------------------|-------------|-------|----------|----------|----------------------------| | km
in leg | 8.99
0.32 | 0 | m ⊦ | 70 | 4 | 4 | 4 | ס נ | 4) 7. | . 0 | ω | Ч г | J (*) | 1 (,) | w | 411 | JU - | 4.1 | - 17 | | w · | 4. 1. | | ٠. | ٠, | | : ~. | ٠. | -: | • : - | ,
,
, | · | ٠. | | . ` : | | ٠. | | | | | tion
longitude | 091 32 W
091 35 W | 91 37 | 91 39 | 91 52 | 91 52 | 91 58 | 92 02 | 92 12 | 97 76 | 93 45 | 93 48 | | 04 03 | 094 06 W | 95 47 | 95 52 | | | | 096 01 w | | 06 04 | 096 04 w | !
! | 096 02 w | | 00 96 | 095 57 W | | 95 52 | 095 51 W | 1 | | 14
5 | 95 45
95 44 | 95 44 | 95 43 | 095 42 W | 4 t C C | 095 42 w
095 23 w | | posit
latitude l | 08 31 n
08 27 n | 3 22 | 8 19 | 2 K | 8 04 | 7 54 | 7 50 | 7 52 | 7 50 | 77 9 | 60 9 | | ٦
٦ | 05 49 n | 4 01 | 3 57 | | | | 03 47 n | | 77 | 03 44 n | : | 03 53 n | | 4 03 | 04 07 n | | 4 17 | 04 22 n | H 7 | | , | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 48 | 4 54 | 04 58 n | 20 0 | 05 12 n
06 43 n | | course (deg.) | 218
218 | 218 | 218 | 218 | 224 | 224 | 227 | 227 | 227 | 777 | 222 | 222 | 222 | 222 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 012 | 012 | 002 | 002 | 005 | 005 | | 000 | 000 | 000 | 000 | | beauf. | ოოი | ი თ | 7 | . N | 9 (7 | 0 | 7 | 7 | ~ | n 0 | n m | ო• | 4. r. | U IC | υŊ | ιO | ហ | ហ | ህ የረ | n rO | 2 | Λu | n w | 0.10 | Z. | ហេ | n r | יז נו | ıν | ۲۵ . | n u | าเก | ıΩ | ι D | N K | ጎ ነና | , KO | 4. | 4 4 | · 4· L | | sition
vert. | 555 | 12 | 01 | 01 | 7.0 | 025 | 02 | 03 | 03 | | | | | | | | 03 | 02 | 000 | 9 | 02 | | 00 | 000 | ! | Š | TO | 12 | 12 | 12 | 12 | 010 | 1 | | 5 | 100 | 020 | 02 | | | | sun po | 60 | 9
9
9 | 11 | 01 | 35 | 0.1 | 01 | 01 | 01 | | | | | | | | 08 | 80 | 800 | 2 | 80 | | 03 | 03 | 3 | ; | 04 | | | | | - 8C | | | | | 80 | | | | | codes | 31 | 56
56 | 55 | 60 | ۶ د
۲ | 1 12 | 55 | 69 | 69 | 31 | 63
4
63 | 56 | 52 | ۲.
۲. | 64 | 55 | 52 | 55 | 63
7 | 200 | 56 | 56 | 40 | 69 | 69 | 31 | 31
55 | ر
د ر | 63 | 56 | 64 | 40 | 31 | 31 | 55 | ე ç | 200 | 64 | 69
21 | 31
56 | | erver corright | 31 | 31
63 | 56 | 64 | 40 | 2 6 | 26 | 64 | 64 | 69 | ر
1 کر | 63 | 56 | o 0 | 31 | 26. | 56 | 56 | 52 | 63 | 63 | 63 | 3.L | 5 4
1 4 | 64 | 69 | 6 r | ט ער | 55 | 63 | 31 | 3 T | 69 | 69 | 5.6 | υ
υ
υ | 93 | 31 | 40 | 69 | | obse
left | 69 | 0
0
0
0 | 93 | 31 | 31 | # LC | 3 | 31 | 31 | 64 | ט וכ
ט וכ | 55 | 63 | 9 6 | 69 | 63 | 63 | 63 | 5
5
5
5 | . 5
. 5
. 5 | 55 | 55 | 60 | ۶ د
۲۰ | 31 | 64 | 64 | ე ლ
დ | 26 | 55 | 69 | 99 | 64 | 64 | 63 | 0 P | 200 | 69 | 31 | 64
55 | | speed
km/hr | 100 | מ
מיני | 9.4 | 9.4 | 2, 0
4, L | | יו (| 9.2 | 9.8 | ص
ا | - [- | 7:7 | 7:7 | 6.0 | א ת | 1 (| 7.5 | 7.5 | 7.5 | - L | | 7 | | | - 60 | 8 | ω ο
 | 0 0 | 2 00 | 6 | 6.6 | ນ 0 | . 6 | 6 | 6 | بر
ص د | ν α | 8.8 | œ ، | 18.89
19.63 | | date | 1 ~ ~ 1 | ヿヿ | | \square | 75 | 7 5 | 7 = | ! = | 7 | Ξ | 7.5 | 7.7 | 7 | 7 | 77 | 1. | 7. | 7 | 7 | 75 | 77 | 7 | 7 | 7 | 7. | 7 | 7 | 7 | - '- | | 2 | | - [- | ~ | - | - 6 | ~ i~ | - | - 1 | 871020
871020
871021 | | leg | 01 | 01 | 01 | 01 | 01 | 7.0 | 10 | 015 | 02 | 01 | 200 | 0.0 | 0.5 | 01 | 700 | 7 0 | 03 | 04 | 05 | 000 | 080 | 60 | 10 | 17 | 01 | 0.5 | 03 |)
4. a | 900 | 07 | 08 | 60, |) F | 12 | 13 | 14 | 1 T | 17 | 18 | 20 | | series | 05 | 0 0 | 07 | 80 | 00 |) F | 12 | 11 1 | 13 | 01 | 01 | 01 | 01 | 00 | 700 | 10 | 01 | 01 | 01 | T C | 01 | 01 | 01 | 010 | 000 | 02 | 000 | 700 | 200 | 0 0 0 | 02 | 000 | 000 | 02 | 02 | 000 | 7 0 | 020 | 000 | 000 | km in leg 6.54 6.54 6.87 3.60 12.86 12.86 12.36 13.79 13.79 6.33 8.00 3 3 3 3 33333333 3333 **8888** 3 3 3 ≥ ≥ ≱ ≽ 3 3 3 3 course position (deg.) latitude longitude 01 02 01 01 58 58 58 56 06 50 21 23 095 095 095 094 095 095 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 Z d d d п はロ g g d d ¤ a a a 49 18 03 05 14 28 32 49 52 07 07 08 08 08 09 09 10 07 07 07 07 07 07 00155 beauf. sun position horz. vert. 03 03 02 00 00 00 01 01 12 12 03 00888888 03 03 03 03 04 04 04 observer codes left right rec 19. 63 119. 63 speed km/hr 871021 871021 871021 871021 871021 871021 871021 871021 871021 871022 date leg series Table 2. (continued) | km
in leg |
12.3.3
12.4.7
11.2.5
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6 | |---------------------------|--| | de | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | itu | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | position
tude longitud | 0933
0934
0944
0944
0944
0944
0994
0994 | | osi | | | 11 | 444 44 44 44 44 44 44 44 44 44 44 44 44 | | lat | 111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | course (deg.) | 200
200
200
200
200
200
200
200
200
200 | | beauf. | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | position vert. | 03 00 00 00 00 00 00 00 00 00 00 00 00 0 | | sun pc | 008
008
008
009
001
001
001
001
008
008
008
008
009
009
001
001
001
001
001
001
001
001 | | codes
t rec. | 440
440
440
440
440
440
440
440 | | | ###################################### | | observer
left righ | 000
000
000
000
000
000
000
000
000
00 | | speed
km/hr | 17.59
17.78
17.78
17.78
18.15
18.15
18.33
18.33
18.33
18.33
18.33
18.33
18.33
18.33
18.33
18.52
18.33
18.33
18.33
18.33
18.33
18.33
16.67
16.67
16.67
16.30
16.30
16.11
16.11
16.11
16.11
16.11
16.30
16.11
16.30
16.30
16.30 | | date | 871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024
871024 | | leg | 002
002
003
003
003
003
003
003
003
003 | | series | 002
003
003
003
003
003
003
003
003
003 | | km
in leg | 2.56
1.2.89
1.2.89
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85
1.3.85 | |---------------------------
--| | position
ude longitude | 096 25 w
097 20 w
097 23 w
097 23 w
097 23 w
097 44 w
097 43 w
097 44 w
097 45 w
098 49 w
098 49 w
098 49 w
098 42 w
098 42 w
098 41 w
098 41 w
098 41 w | | latit | 09 22 n
08 06 n
07 44 n
07 25 n
07 25 n
07 25 n
07 25 n
07 30 n
07 31 n
07 31 n
10 29 n
10 39 n
10 35 n
11 12 n
11 12 n
11 12 n
11 12 n | | course (deg.) | 2000
2000
2000
2000
2000
2000
2000
200 | | beauf. | | | position | 000000000000000000000000000000000000000 | | sun po | 8 0001111 111 00 00 00 00 00 00 00 00 00 | | codes
t rec. | 4 00 00 00 00 00 00 00 00 00 00 00 00 00 | | observer co | $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | | obse
left | | | speed
km/hr | 166.30
166.30
166.30
166.30
177.04
188.33
188.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33
198.33 | | date | 871024
871024
871024
871024
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871025
871027
871027
871027
871027
871027
871027 | | leg | 033
001
001
001
001
001
001
001
001
001 | | series | 00000000000000000000000000000000000000 | | km | in leg | 6.17 | . 6. | 9 | ۳. | ω. | 8.6 | ۲. | ۵, | o. | w, r | ુ: | 4. (| . س | 4.4 | 2.0 | 4. | 2.0 | ų. | ٦. | 4,1 | 9 | 9 6 | ٦. | • | ε. | E. | ω, | ώ, | ٥'n | . ~ | .5 | ٠.5 | ٥٠ | 4.
2. | • | 3. | 2 | 9 | z. | 9 | ∞'- | 4. 0 | 9 6 | 9 | 9.4 | • | |----------|--------------|--------|------|----------------|-----|-----|-----|----------|-----|------|----------|----------|------|------------|------|------|-----|------|-----|-----|------|-----|-------|----------|----------------|-----|------|-----|-----|-------|-------|------|-----|-----|---------------|-----------|------|----------------|------|-----|------|-----------------|--------------|-----|------|--------------|-------| | | longitude | _ | 29 W | a | S) | S | ď | 4 | | ≥0 ₹ | | _ | | N.C | 03 W | , | | M 60 | | | 7 M | 2 | 10 14 | 0 | | | M 60 | | , | 1.5 W | ۲ | м 60 | | (| T3 W | | v | _ | 31 W | | 33 W | 4 | | 7 | 0 | 41 W | v | | tion | long | σ | 098 | σ | g | 9 | 9 | 9 | | 660 | 9 | 9 | , | 100 | 100 | l | | 100 | | | 100 | | 100 | 2 | 100 | 100 | 101 | 101 | | 101 | | 101 | | | TOT | | | | 101 | | 101 | | | | | 101 | | | sod | atitude long | α | 25 n | 0 | 4 | m | 9 | N | | 21 n | ω . | 4 | | # 1 | 26 n | | | 38 n | | | 13 n | 2 | 7. | 2 | 7 | 0 | 36 n | - | , | 2 v v | ٠ | 15 n | | , | u 00 | | 0 | 6 | 57 n | | 52 n | 8 | | 6 | S | 30 n | 0 | | | - | | 11 | - | Н | Н | 6 | 6 | | 60 | σ, | 6 | | nα | 800 | , | | 08 | | | 80 | ω | 80 | 2 | æ | 6 | 90 | 9 | , | 200 | , | 90 | | , | 90 | | 9 | | N | | 0.5 | 2 | | 5 | 2 | 0.5 | า | | course | • 1 | 200 | 206 | 206 | 206 | 200 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 200 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 209 | 200 | 202 | 209 | 209 | 210 | 210 | 210 | 210 | 210 | 215 | 215 | 215 | 245 | 24.0 | 245 | 215 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | ^ T 7 | | beauf. | | ~- | | , , | 7 | 8 | 7 | ~ | - | H | 2 | ~ | Ν, | ⊣ ⊩ | ٠,- | ۱ ۲۰ | 1 | Н | 1 | 7 | 7 | ~ ~ | n r | . c | 'n | e | n | က | m r | n 0 | ט ניו | m | úι | m r | י ני | n (r | ı m | 'n | m | ĸĵ | m · | 4. | - | * 4 | 4 | 4 (1) | Ĵ | | position | vert. | 01 | 02 | 02 | 03 | 03 | 03 | 03 | 02 | | 05 | 01 | 07 | 1 C | 01 | 01 | 01 | 01 | 01 | 01 | 02 | 02 | 200 | 3 6 | 3 | | | 03 | | ç | 7 | | | | | | | | | | | | | | | | | | od uns | horz. | 07 | 01 | 01 | 02 | 02 | 60 | 60 | 60 | | 60 | 60 | 60 | 1 T | 1. | 12 | 12 | 01 | 01 | 01 | 01 | 01 | 150 | 0.0 | 1 | | | 08 | | 0 | | | | | | | | | | | | | | | | | | | codes | rec. | 64 | 69 | 31 | 64 | 64 | 31 | 64 | 69 | 63 | 26 | 52 | 31 | # O | 63 | 26 | 55 | 31 | 64 | 64 | 69 | 63 | 0.00 | 64 | 64 | 64 | 22 | 63 | 63 | 0 4 | 6 4 | 69 | 31 | 55 | n c | ה עם
ה | 64 | 64 | 31 | 31 | 55 | 22 | 503 | 2 0 | 64 | 69 | 10 | | erver o | 4 1 | 31 | 64 | 69 | 31 | 31 | 69 | 31 | 9 | 55 | 63 | 56 | 200 | 7 9 | 55 | 63 | 26 | 69 | 31 | 31 | 22 | 20 | 20 | 3.5 | 31 | 31 | 26 | 55 | 55 | 505 | 31 | 64 | 69 | 26 | 0
11
11 | ר כע | 31 | 31 | 69 | 69 | 26 | 26 | 22 | 63 | 31 | 64 | 00 | | opse | left | 69 | 31 | 64 | 69 | 69 | 64 | 69 | 31 | 26 | 55 | 63 | 0.4 | 20% | 26 | 55 | 63 | 64 | 69 | 69 | 63 | 52 | 00 | # 6
9 | 69 | 69 | 63 | 26 | 56 | 22 | 69 | 31 | 64 | 63 | 50 | ט גר | 69 | 69 | 64 | 64 | 63 | 63 | 0 Y
1 O | 55 | 69 | 31 | 7 | | speed | km/hr | 18.52 | · 6 | 6 | 6 | 6 | ۲. | <u>.</u> | œ. | ω. | <u>.</u> | <u>.</u> | | 0 a | | 8 | 8 | ω, | æ. | œ, | | | o a | · ~ | | ä | 7. | 7. | ٠, | 0 v | | ι, | 6 | Ġ | o u | | 2 10 | | | 7 | ٠. | ٠, | ٠, | : . | : .: | | ٠ | | date | | 871027 | 71(| 71(| 710 | 710 | 71(| 710
| 716 | 7 | 77 | 71(| 7; | 717 | 12 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 7,5 | 710 | $\frac{1}{10}$ | 710 | 710 | 710 | 710 | 710 | 110 | 710 | 710 | 710 | 770 | 7 7 7 | 710 | $\frac{1}{10}$ | 710 | 710 | 770 | $\frac{710}{2}$ | 7.0 | 10 | 710 | 710 | 7 | | led | | 02 | 02 | 03 | 01 | 02 | 01 | 02 | 03 | 01 | 01 | 01 | 0.5 | 10 | 01 | 02 | 03 | 04 | 05 | 90 | 01 | 010 | 700 | 0.4 | 05 | 90 | 01 | 03 | 03 | 700 | 03 | 01 | 02 | 03 | 40 | 2 0 | 070 | 08 | 01 | 02 | 03 | 04 | 000 | 07 | 08 | 10 | 7 | | series | | 0.5 | 90 | 90 | 07 | 0.2 | 01 | 01 | 01 | 02 | 03 | 0.4 | 40 | 900 | 07 | 07 | 0.7 | 07 | 0.7 | 0.7 | 80 | 600 | 600 | 600 | 60 | 60 | 01 | 01 | 01 | 200 | 000 | 03 | 03 | 03 | S 0 | 0 0 | 000 | 03 | 04 | 04 | 04 | 0.0 | 40 | 0.0 | 0.0 | 0 0 | ۴, | | continued) | |------------| | ت | | 2. | | le | | ľab | | !
! | | | |----------------------------|---|----------------------| | km
in leg | 802010001000101110000000000000000000000 | | | itude | 44 4 4 4 5 5 5 5 6 4 4 4 4 4 4 4 4 4 4 4 | 49 w | | ltion
long | 101
101
102
102
102
103
101
101
101
101
101
101
101
101
101 | 101 | | position
latitude longi | 05 22 n
05 16 n
05 50 n
06 50 n
06 09 n
06 33 n
06 33 n
06 32 n
06 52 n | 09 42 n | | course (deg.) | 22222222222222222222222222222222222222 | | | beauf. | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 'ਦਾਦਾਦਾ | | position
vert. | 03 05 000 01111150 0111150 000 000 000 000 | 0000 | | sun po | 0 000 00 000000 000000 00 00000 00 00000 | 03
04
04 | | codes
t rec. | 00000000000000000000000000000000000000 | 55
31
64 | | ver | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | 56
69
31 | | obser
left | 00000000000000000000000000000000000000 | 63
69 | | speed
km/hr | 17.22
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29
17.29 | 000 | | date | 871029
871029
871029
871029
871029
871029
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030
871030 | 7103
7103
7103 | | leg | 11111111111111111111111111111111111111 | 05
06
07 | | series | 00000000000000000000000000000000000000 | 01001 | | ed) | | |-------------|--| | (continued) | | | Table 2. | | | km
in leg | 13.33 | 0 | ו כע | U I | - (| n | ν (| ٠, د | ٠, | 4 (| ω, | ١٩ | _ | m . | _ (| ى.
ئ | ອາໄ
ບໍ່ເ | ¥ < | , 0 | 'nω | 3 00 | ω, | w | ٠. | 4, | Ψ, | ٦ u | i j d | . u | 4 6 | 9 | 9.0 | | 3. | 7.4 | | | | 5.9 | 7. | 4. | • • • | ٠, ۵ | | | | `. | |-------------------|--------|----------|------|-----|-----|-----|-----|----------|-----|-----|----------|-----|----------|----------------|-----|---------|-------------|--------|--------|-----|------|----------------|--------------|-----|--------|--------|--------------|-------------|----------------|-----------------|-----------------|-------------|------|-----|-----|------|--------|-------------|-----------|-----|--------------|-------|--------|------------|---------|------|------| | lde | | ≯ | | | | | | ≯ | | | ≯ | | | | | | 4 W | ;
L | * | | | × | | | 5
W | | | X : | | | | | 7 W | | | × ; | | M 6 | | | × | | | | | ≥ 1 | | | ion
ongitude | 4 | 01 42 | 4 | 4 | 4. | 4 | • | OT 4 | • | 4. | 01 48 | 4 | 4 | 4 | 5 | | 03 07 | 11 60 | ٦
0 | | | 03 24 | | | 03 3 | 4 | L | 200 |
⊃
| | | | 04 2 | | • | 400 | r
r | 06 1 | | 6 2 | | 0 i | ص
م | 6 4 | 6 4 | 06 4 | 6 | | | 10 | H | Ä | Ä | Ĭ, | Ĭ | | 7 | ì | Ä; | ; | 7 | <u>;</u> | ij | 7 | · | Ŧ | - | | | | H | | | H | ∓
· | | ٦, | | | | | Ä | | | 4 - | | Ä | | | - | | | 1 | - | | ⊣ | | po | 00 | u 9 | 6 | m | ، ف | œ | ı | U
U | 1 | _ | u 6 | ٥ | 9 | 0 | 9 | . (| 33
D | c | | | | u 9 | | | 2 n | S | Ų | מ
מ
מ | N | | | | 18 n | | Ų | 20 n | _ | 27 n | | 6 | 32 n | 41 | ر
د | œ | 0 | 43 n | 5 | | lati | | 10 1 | 0 | 0 | 0 (| 0 | (| 10 3 | | 0 | 10 4 | 0 | 0 | , , | 2 | | 12 2 | 7 | | | | 12 3 | | | 12 4 | N | | 77 | | | | | 13 | | , | 7, | 2 | 14 | | 4 | 14 | ₩. | 4 | 4 | . 4 | 4. | 4 | | course (deg.) | 004 | 358 | 358 | 358 | 358 | 358 | 358 | 358 | 358 | 004 | 004 | 004 | 004 | 004 | 302 | 302 | 302 | 302 | 202 | 202 | 302 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 000 | 300 | 300 | 300 | 300 | 300 | 200 | 290 | 290 | 290 | 290 | 290 | 290 | 272 | 032 | 032 | 032 | | beauf. | 4.4 | ٠ 4 | 4 | 4 | 4 | 4 | 4. | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | ς, | rU i | ΛL | U F | ೧ ៤ | ט ער | יז ני | ı.C | Ŋ | 4 | 4 | √ † 1 | LΩL | ∩ - | 7' ₹ | ₽ ₹ | ۲ 😝 | 4 | 4 | 母• | 4 4 | # ₹ | # C | 1 (2) | 7 | ~ | ~ | m n | J (r | n m | m i | 2 | | position
vert. | 02 | 01 | 0.1 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 02 | 02 | 03 | 03 | 02 | 05 | 020 | 7.0 | 5 | 7 0 | | 01 | | | · | 01 | | | - | 0.0 | 05 | 02 | 02 | 03 | 03 | c
C | 03 | 03 | 02 | 02 | 020 | 200 | 01 | 01 | 01 | | sun pos | 40 | 05 | 0.5 | 05 | 90 | 0.7 | 0.2 | 08 | 08 | 90 | 90 | 08 | 08 | 80 | 0.5 | 0.5 | 05 | 90 | 90 | 90 | | 9 0 | | 90 | | | | 08 | | | | | 10 | | | | | | 90 | 90 | 90 | 90 | 90 | 00 | 0.4 | 04 | 90 | | codes | 69 | 56 | 31 | 31 | 64 | 64 | 69 | 63 | 56 | 56 | 55 | 31 | 31 | 31 | 64 | 69 | 22 | 63 | 63 | 9 7 | 200 | ט גר | 64 | 64 | 69 | 31 | 31 | 55 | 63 | 64 | 4 O | ۰
د د | 22 | 63 | 56 | 64 | 40 | ט וכ
ע ה | 2 2 | 55 | 69 | 31 | 31 | 04 | 20 | 69 | . 26 | | server c | 64 | 63 | 69 | 69 | 31 | 31 | 64 | 52 | 63 | .63 | 26 | 69 | 69 | 69 | 31 | 64 | 26 | 21 | 55 | 9 | 50 | 0 6 | 9 6 | 31 | 64 | 69 | 69 | 56 | 52 | 31 | 77 | 4 O | 50 | 52 | 63 | 33 | 3, | 9 Y | 63 | 56 | 64 | 69 | 69 | 7.5 | 63 | 64 | 63 | | obse | 31 | 7 L | 64 | 64 | 69 | 69 | 31 | 26 | 55 | 22 | 63 | 64 | 64 | 64 | 69 | 31 | 63 | 56 | 20 | 52 | U 1 | 7 C | 000 | 69 | 31 | 64 | 64 | 63 | 56 | 60 | 0 c | 54 | 63 | 26 | 55 | 69 | 0
0 | ህ ቢ
ጣ ቢ | ر
ا ال | 63 | 31 | 64 | 64 | 0 0 |)
() | 31 | 22 | | speed
km/hr | 20.00 | , C | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 7.5 | 7.5 | 9.2 | 6 | 9.2 | 9.2 | 2.5 | 1.8 | 1.8 | 1.8 | 1.8 | 2.5 | 2.0 |
 | , c | 90 | 0 | 2.7 | 2.7 | 2.7 | 3.8 | 0.4 | 4. | 4. 4
O C | | . 4 | 4.4 | 4.4 | 2.5 | 2.0 | N 0 | 0.0 | . 0 | 6.0 | 9.6 | 4.6 | ω.
4. α | 0 | | 8.5 | | date | 871031 | 710 | 710 | 7 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 711 | 711 | 711 | 711 | 711 | 711 | /11 | / L 1
7 1 1 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | | 711 | 717 | 711 | 711 | 711 | | 711 | 7 | 711 | | leg | 80 |) C | 02 | 03 | 01 | 02 | 03 | 01 | 02 | 03 | 04 | 0.5 | 0 | 0.0 | 01 | 02 | 03 | 04 | 02 | 90 | 70 | 200 | 0 - | | 10 | 0.1 | 02 | 01 | 01 | 02 | 50 | 0
4
7 | 90 | 0.7 | 08 | 60 | 01 | 0.5 | 700 | 03 | 04 | 02 | 90 | 20 | 86 | 02 | 01 | | series | 01 | 700 | 020 | 03 | 03 | 03 | 03 | 04 | 04 | 04 | 04 | 04 | 20 | 0.5 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 07 | 710 | 10 | 0.0 | 03 | 03 | 04 | 05 | 05 | ر
د و
د و | O O | 00 | 05 | 05 | 05 | 90 | 900 | 7.0 | 10 | 01 | 0.1 | 0.1 | 01 | 0.0 | 00 | 03 | 10.24 16.59 10.24 10.56 10.56 10.24 10.31 10.31 10.31 10.31 10.31 10.31 10.34 10.31 10.44 2.64 9.82 10.09 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10 km in leg 3 3 3 3 3 33 3 3 3 ⋧ ≱ ≥ ≱ ≽ course position (deg.) latitude longitude 13 18 21 90 02 57 51 0200400432 28 22 23 23 105 105 105 105 105 105 105 105 105 104 104 104 104 104 מממ ц п r g g g g n n 35 47 41 40 07 04 09 01 15 beauf. no. sun position horz. vert. 033 020 01 01 01 01 02 00 02 03 002 003 003 004 005 005 007 007 007 007 007 007 007 007 007 observer codes left right rec $\begin{array}{c} SUUS \\ SU$ 19.82 119.82 20.93
20.93 speed km/hr 871102 871102 871102 871102 871102 871102 871102 871102 871103 871103 871103 871103 871103 871103 871109 871109 871109 871109 871109 871109 871109 871109 871109 871109 871109 871109 871109 date leg series Table 2. (continued) | tinued) | |---------| | . (cont | | e 2 | | abl | | km
in leg | 10.67 2.07 5.04 | 0.0 | ့်ထ | <i>د</i> . د | <i>i</i> N | 2 | | 2 | 9.0 | j w | 1.6 | יה ע | 4. | 4.0 | . w. | ر
د م | | ۲, | ન. ∝ | | 4.0 | 90 | 6.0 | 2 | و و | 6 | œ C | . ~ | 4.0 | 2.2 | 0.1 | i. | 1.7 | , 0, 1 | |-------------------|----------------------------------|-------|---------------|--------------|-------------|------|--------------|------|----------|---------------------------------------|------|----------------|----------|------------------|----------|----------|------------|------|-----------|------------|----------|--------------|----------|--------------|----------------------|------------|----------|------------|----------|------------------|----------|-----------------|-------|----------------------| | tion
longitude | 105 22 W
105 23 W
105 21 W | 05 21 | | 105 21 w | 0 T CO | | 105 09 W | | 104 58 w | 104 47 w | | | 104 36 w | | 104 24 w | | | • | 104 03 14 |)
H | 103 57 W | ָ
ר
ר | 103 49 w | 3 | 101 56 w
101 55 w |)

 | 101 52 w | 1 | 101 38 W | 3 | 101 27 w | 101 18 w | 20 10 | 101 05 w
101 01 w | | posi
latitude | 15 54 n
15 50 n
15 49 n | 5 46 | | 15 40 n | 4 TO | | 14 12 n | | 14 09 n | 14 16 n | | | 14 22 n | | 14 12 n | | | | 13 49 n |)
T | 13 45 n | 7, | 13 41 n | 2 | 13 08 n | | 13 07 n |)
) | 13 13 n | 3 15 | 13 18 n | 13 09 n | 20 | 13 01 n
12 57 n | | course (deg.) | 187
187
187 | മെ | മെ | ω, | | _ | | - | LO L | വ | L | വ | | ~ ~ | 3 | 3 | 0 (0) | 3 | m r | | 4- | ⊣ ┌┤ | | - | | - | 47 | - 1 | ~ | <u> </u> | 4. | せせ | 44 | * 4 4 | | beauf.
no. | | ١,٠,٠ | - O | 0 (| √2 (r | m | m rr | 4 | 4. | ታ ታ | 4. | 4 4 | 4 | 4 4 | * * | 4. | r 4 | 4 | 4. 4 | . 4 | 44 5 | t 4 | 4 C | 9 (2) | m n | n | m n | n | m· | 4 4 | 4 | ታ ታ | რ ⊀ | * 4* 4* | | sition
vert. | 02 | 033 | 03
03 | 03 | £ 6 | 03 | 03 | 02 | 02 | 02
01 | 01 | 01 | 01 | 01 | 01 | 01 | J [| 01 | 05 | 000 | 05 | 03 | | 03 | 03 | 03 | 05 | 000 | 02 | 01 | 01 | 01 | 01 | 010 | | sun po
horz. | 000 | 000 | 7 7
0 0 | 05 | 7 7 | 12 | 12 | 12 | 02 | 0 0 | 12 | 0 0 | 01 | 07 | 02 | 02 | 030 | 03 | 03 | 0 0 | 400 | 0 0 | | 12 | | 12 | 12 | 010 | 05 | 0 0 | 12 | 017 | 01 | 000 | | odes
rec. | 69 | 63 | 55
55 | 55 | 6 o | 31 | 5,6
7,6 | 33 | 63 | 22
69 | 69 | 31
64 | 64 | 5
5
6
7 | 63 | 55 | 0 C | 31 | 64 | 56 | 63 | 0 69
0 7 | 31 | 55 | 7. U. | 56 | 31 | 54
1 | 69 | 5 5 | 26 | 63
31 | 64 | 5 C) C) | | erver c | 31 | 229 | e e
0
0 | 63 | 6
4
4 | 69 | ሊ: ‹
ሊ: ሊ | 56 | 56 | 63
64 | 64 | 9 1 | 31 | 7
2
2
2 | 26. | 63 | 40 | 69 | | 55
55 | 26 | 64
64 | 69 | 63 | 55
75
75 | 55 | 600 | 3 0 | 64 | 0
2
2
3 | 55 | 0
0
0 | 31 | 0 0
7 0 4 | | obse | 31 | 55 | 56
56 | 56 | 37
14 | 64 | 99 | 55 | 55 | 56
31 | 31 | 64
69 | 69 | 93 | 22 | 56 | 3.1
1.5 | 64 | 69 | 9 6 | 55 | 31 | 64 | 56 | 63 | 93 | 64 | # 69
69 | 31 | 26 | 63 | 55
64 | 69 | 56
53 | | speed
km/hr | 17.78 | 7.7 | 7.7 | 7.7 | ສ
ປະເ | 8.5 | დ. ი
ი. ი | 8.5 | 8.5 | 8.5
9.4 | 4. | 4.6 | 9.4 | 4.6 | 0.7 | 0.7 | ,, | 0.7 | 0.7 | 0.0 | 8.1 | ກຸຕ | 8.1 | | 8.1 | 7.9 | 7.9 | 2.0 | 9.4 | 0
4 4 | .5. | 8.5
7.5 | 7.5 | 0.00 | | date | 871109
871109
871109 | 7110 | 7110 | 7110 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111171111111111111111111111111111111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | /111
7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | $7111 \\ 7111 $ | 7111 | $\frac{7111}{7111}$ | | leg | 010 | 02 | 03 | 0.5 | 010 | 03 | 0 4 | 90 | 0.7 | 8 6
0
0 | 10 | 11 | 13 | 14 | 01 | 020 | 000 | 0.5 | 96 | 07 | 03 | 02 | 03 | 00 | 01 | 03 | 04 | 000 | 01 | 000 | 04 | 02 | 07 | 000 | | series | 06 | 22.72 10.877 2.72 2.72 2.74 2.74 2.75 2.7 km in leg ≯ course position (deg.) latitude longitude ≥ ≥ ≥ ⋧ 3 3 ⋧ ⋧ 3 3 **≯** ≯ 43 42 07 48 10 44 40 47 54 54 08 13 100 100 100 u П RRRR u u ¤ ¤ \mathbf{q} ¤ u Д ᇽᇽ n n 52 50 beauf. no. sun position horz. vert. 02 02 02 02 03 03 02 02 01 01 01 001 001 002 002 003 003 03 03 03 03 04 04 05 05 05 05 observer codes left right rec. speed km/hr 16.30 116.30 115.74 115.74 115.74 115.74 115.74 117.04 117.22 871111 871111 871111 871111 871111 871111 871113 871114 871114 871114 871114 871114 871114 date leg series | nued) | | |-------|--| | nti | | | (30 | | | ole 2 | | | Tab | | | km
in leg | 0 1 | 0. | 4 - | 4 — | 4 | ထေး | ט פ | ט ע | 7 | Ŋ. | 4. | - 0 | 2.7 | CA L | ن در | щ, | ٦, ۷ | , 00 | ന് ം | 9.6 | Π. | ۰, ۰ | | | 40 | 4.4 | ۳.۰ | 4 | ω ; ω | 1-1 | | 7. 4 | | | -:- | 1.76 | |---------------------|----------|--------------|----------|--------|-----------|--------|--------|------------|------------------|------|----------|--------------------|------|----------|----------|-------------------|----------|------------------|------|------------------|----------|--------|------|--------------|------|----------|-----------|------------|--------------|----------|------------------|------|-------------|------------|----------|------------------| | tion
longitude | 097 21 w | 097 28 w | | 7 35 | 097 40 W | 7 42 | 6 | M 07 600 | 99 23 | | 099 29 W | 33 | | 099 45 W | 099 54 w | 1 | 100 01 W | | 7 | 00 19 | 100 21 w | 00 29 | | 100 32 w | ני | 101 57 W | 102 05 14 | | 102 10 w | | | 22 | 102 25 W | | 102 32 W | 102 35 W | | posit
latitude l | n 68 80 | 08 37 n | | 8 36 n | 08 34 n | 8 35 n | ;
0 | 07 56 n | 7 51 n | | 07 49 n | u oc / | | 07 46 n | 07 43 n | | 07 42 n | 7 4 7 | ; | 7 41 n
7 45 n | 07 44 n | 7 47 n | | 07 46 n | , | 07 06 n | n 60 60 | 2 | 07 04 n | | | 5 | 07 02 n | | 06 58 n | 06 57 n | | course (deg.) | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 255
255 | 255 | 255 | 255 | 255
255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 780
780 | 250 | 2220 | 250 | 250 | 250 | 250
250 | 200 | 250 | | beauf. | e c | ი ო | ~ | n m | 'n | m | m | ~ c | 4 C | ı 🗪 | 7 | n u | nm | m | 7 0 | 7 | ~ ~ | 7 (7 | ന | m (r | n m | 7 | N C | 4 (7 | 0.0 | 7 (2) | 0,0 | 4 (7 | 00 | 100 | ກຸຕ | M (| 1 ന | ന ന |) M (| n m.c | | position
. vert. | 2 | 7.0 | 8 6 | 200 | 4 | 0.5 | | | | | | 100 | 1 | 01 | . [0 | 01 | 01 | TO | | 05 | | | | 03 | | | | 02 | 02 | 0.2 | 02 | 02 | | 01 | | | | sun po
horz. | | 111 | 11 | T [- | 1 | 12 | | | | | | ω «
Ο C | 2 | 60 | | 10 | | | ļ | 11 | | , | | 12 | | | | 90 | 0.2 | 0.7 | 0.7 | 08 | | 03 | | | | codes
t rec. | 69 | 31 | 31 | 94 | # 9
15 | 56 | 26 | 55 | 3 6 | 64 | 64 | 55 | 63 | 63 | | 64 | 691 | 2
2
2
3 | 56 | 56 | 31 | 55 | 55 | 2.0 | 26 | 56
64 | 64 | 9 6 | 888 | 38 | 5
5
5
6 | 101 | 56
4 | 64
69 | 69 | 31 | | erver
righ | 64 | 6
9
9 | 69 | 7 F | 7 1 | 52 | 55 | 63 | 00 | 31 | 31 | 63
7
8 | 50 | 56 | 60 | 31 | 64 | 69
69 | 55 | 22 | 60 | 63 | 63 | 5
5
5 | ស្ត | 3 C | 31 | 0 C | 56 | 200 | 63
7.0 | 52.5 | 31
31 | 31 | 64 | 0 0 1
4 0 1 | |
obs
left | 31 | 31
64 | 64 | 0 0 | 9 6 | 63 | 63 | 56 | 64 | 69 | 69 | 56 | 200 | 55 | 40 | 69 | 31 | 5 50 | 63 | 63 | 64 | 56 | 56 | 3 6 | 93 | 6.03 | 69 | ر
ا ال |
 | 55 | 20 | 63 | 69 | 93 | 31 | 31
64 | | speed
km/hr | 3.7 |
 | 7.7 | |
 | . m | 3.3 | 2.5 | ⊃α
- પ | 9 60 | 9.0 | 10 U | 9 G | 6.6 | o u | 9.0 | 9 | 9 9 | 6.6 | 9.0 | 7.0 | 7.2 | 5.5 | 70 | 7 | 7.0 | 7.7 | | | 7:5 |
 | | | 7.7 | | 17.96 | | date | 7111 | 7111 | 7111 | /111 | 7111 | 7111 | 7111 | 7111 | / 1.1.1
71.11 | 7111 | 7111 | $\frac{7111}{111}$ | 7111 | 7111 | 7111 | $\frac{111}{111}$ | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | /111
7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 111 | 7111 | 7111 | 7111 | 871116
871116 | | leg | 03 | 04 | 02 | 03 | 0
4 r | 010 | 02 | 01 | T C | 0.0 | 01 | 01 | 03 | 04 | 0.5 | 02 | 01 | 010 | 03 | 01 | 7.0 | 01 | 020 | 03 | 0.5 | 0.0 | 025 | T0 | 010 | 03.0 | 0 4
7 7 | 90 | 000 | 020 | 0.4 | 01 | | series | 0.5 | 02
0
0 | 90 | 900 | 9 9 | 07 | 0.7 | 01 | 200 | 03 | 0.4 | 0.5 | 0 0 | 0.5 | 05 | 0 0 | 90 | 07 | 07 | 80 | | 11 | 11 | | 11 | 11 | 010 | 20 | 030 | 03
03 | 03 | 03 | 0
0
4 | 4.0 | 0 4 | 04 | Table 2. (continued) | 1 |----------------------------|----------------------------|-----------|----------|--------------|----------|------|--------------------|-----------|------|----------------------|--------|------------|----------|--------------------|-------------|------------------|-----------------|----------------|------------|------|-----------------------|------------|--------------|------------------|------|----------------|--------------|-------|----------------|-----------| | km
in leg | 4.40 | n 4. | 4.0 | 90 | ω, α | , 00 | 0 4 | | 2.0 | ~ ~ | ۱۳. | 4. ⊢ | 7.0 | , φ. α | | ٠. | ص م | , e | 4.5 | ω, | ન જ | 2.4 | ٠, | Η.α | 20 | ى بى | ω 0 | ع س ر | <u>Σ</u> ∞ . | 00 | | tion
longitude | 102 58 w | 103 02 w | | 103 10 w | | , | 103 16 W | | | 103 21 w
103 26 w | | 104 54 w | | 105 05 W | L | 105 14 W | | 105 31 w | 105 36 w | 1 | 105 45 W | 105 48 W | 7 | 105 57 w | | 06 08
06 10 | 106 14 W | 06 05 | 106 06 w | | | position
latitude longi | 06 46 n | 06 44 n | | 06 40 n | | | 06 35 n
06 34 n | 5 | | 06 28 n
06 27 n | | 06 02 n | | 05 58 n | \
\
L | 05 56 n | | 05 51 n | 05 49 n | 1 | 05.45 n | 05 44 n | 7 | 05 41 n | | 5 37 | 05 34 n | 3 40 | 03 30 n | | | (deg.) | 240
240 | 240 | 240 | 240
240 | 240 | 240 | 240 | 210 | 210 | 250
250 | 250 | 249
249 | 249 | 249 | 249 | 249
249 | 249 | 249 | 249
249 | 249 | 249
249 | 249 | 249 | 249 | 249 | 249
249 | 176 | 176 | 176 | 176 | | beauf. | 4444 | 444 | t 41 · | ታ ታ | 44 | 4. | 4 4 | 4 | * 4 | 4 ru | ı vo • | 4 4 | 4 4 | ' ' ' ' | * 47 * | 7 7 7 | ਹਾ ਹ | H 44 | 44 | 4 | 4 4 | ধ ধ | r 4 7 | 4 4 | 4 | 4 4 | 4. | . 4 | † . | 4 4 | | position vert. | | 01 | T | | | 02 | 200 | 02 | | | | 03 | | | | | 10 | - - | 01 | 01 | | | | | | | | | (| 05 | | sun po
horz. | | 12 | 7 | | | 12 | 12 | 01 | | | | 07 | | | | | 60 | | 60
60 | | | | | | | | | | | 10 | | codes
t rec. | 52
54
54
57 | 64
4 4 | 69 | 31 | 31 | 63 | ታ
ኒ |) (C) (1) | 56 | 64
69 | 69 | 20 | 56 | 93 | 317 | 56 | 63 | 22 | 55
69 | 31 | 31
64 | 64
64 | 56 | 56 | 22 | 52
66 | 37. | 31 | 524 | 55
76 | | erver c | 63
31 | 37 | 64 | 64
69 | 99 | 56 | 63 | 55.5 | 55 | 31
64 | 40 | 22 | 55 | 9 9 9 | 69 | 55 | 5
6
6 | 63 | 63
64 | 69 | 3.0 | 31
5 | 55 | 5
5
5
6 | 63 | 63
64 | 69
7
8 | 69 | 97
63 | 6
ይ | | obse
left | 200 | 60 | 31 | 31
64 | 64
55 | 22.0 | 5 C | 63 | 63 | 31 | 31 | g
g | 63
55 | 31 | 2.4 | 63 | 55
55 | 56 | 31 | 64 | 69 | 69 | 63 | 63 | 26 | 31 | 64 | 64 | 56 | 56
63 | | speed
km/hr | 17.59 | : -: - | ٠.٠٠ | ~;~; | 7. | | ۰. | | | ن ن | 0 | ۲. | 7 | | | | <u>.</u> . | | | ~ | ω α | 8 7 | | | | | | | · · · | ·. | | date | 871116
871116
871116 | 7111 | 7111 | 7111
7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | $^{\prime 111}_{711}$ | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 7111 | 711177111 | | leg | 03 | 000 | 080 | 01 | 02 | 0.4 | 90 | 07 | 60 | 10 | 173 | 07 | 03 | 000 | 010 | 01 | 020 | 0 0 | 02 | 07 | 07 | 03 | 05 | 010 | 03 | 01 | 01 | 010 | 03 | 9 C | | series | 9999 | 90.0 | 900 | 90
07 | 07 | 07 | 07 | 07 | 07 | 07 | 07 | 01 | 01 | 100 | 120 | 03 | 03 | 03 | 0 0
0 | 03 | 0 4 | 0 Q
4 Q | 04 | 05 | 05 | 9 0
0 0 | 07 | 010 | 01 | T [0 | | (continued) | | |-------------|--| | 2 | | | Table | | | 1 1 | | | | | | | | |-------------------|--|------------------------------|---|--|--|--|--| | km
in leg | 04444 | 0.044.000 | 900109000 | v.w.w.o.o.w.w. | 8.08.07.04. | 11.02
11.03
11.30
11.38
11.58
11.58 | 466464 | | ion
ongitude | 05 w
09 w
10 w | 10 w
11 w | 09 w
53 w
02 w
03 w | 14 119 | 53
11
14
14
14 | 2594443390 W W W W W W W W W W W W W W W W W W W | 35
50
56 | | 111 | 106
106
106
106 | 106
106 | 106
106
106
106
107 | 000 | 0000 00 | 108
108
108
108
108
108 | 110
110
110 | | pos
latitude | 03 20 n
03 13 n
03 11 n
03 06 n | 02 59 n
02 55 n | 02 43 n
01 25 n
01 26 n
01 26 n
01 27 n
01 31 n | 31
33
33 | 33 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 001 46 n
001 48 n
001 49 n
001 50 n
001 51 n
001 53 n
001 53 n | 21
25
27
38 | | course
(deg.) | 176
176
176
176
176
176 | 176
176
176
164 | 164
164
281
281
281
281 | 281
281
281
281
281
281 | 281
281
281
281
281
279 | 279
279
279
279
279
294 | 294
294
294
294 | | beauf. | <u>ቀቀቀቀቀቀየ</u> | י אי אי אי אי אי כי | Ù W W W 4 4 4 4 4 | 4 4 ሺ ሺ ሺ ሺ ሺ ሺ | מ מ מ מ מ מ מ מ | N N N N N N 4 4 4 | <i>ਚਿ</i> ਚ ਚ ਚ ਚ | | position
vert. | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0.00 | 001 | 000000000000000000000000000000000000000 | 0011011011011 | 03
03
03
03
03 | 000
01
01
01 | | sun po | 10 | 11 ; | 001 | 07
07
07
07
07 | 000008881110008 | 111111111111111111111111111111111111111 | 90
90
90
90
90 | | codes
t rec. | 933
933
933
933
933
933
933
933
933
933 | 4 4 6 0 0 U | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 331
331
20
20
20
20
20
20
20
20
20
20
20
20
20 | 94
94
93
55
55
55 | 0 4 6 0 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 31
56
63
69 | | erver | | 331
944
644
63 | 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 140000000
1400000000 | 31
31
64
69
63
63 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 31
31
55
56
64 | | obse
left | 69
63
52
64
64
64
64
64
64
64
64
64
64
64
64
64 | 93
33
34
36
37 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.66
44
60
60
60
60
60
60
60
60
60
60
60
60
60 | 69
31
50
50
50
50
50
50
50
50
50
50
50
50
50 | 63
63
63
63
63
63 | 64
63
55
31 | | speed
km/hr | 7.7.7.7.888.2.7.7.7.7.7.7.7.7.7.7.7.7.7. | ດທຸດຄຸດຕຸ | | | 10.00000 | 22.04
22.59
22.59
22.59
22.78
23.15
23.15 | 6666666 | | date | 7111
7111
7111
7111
7111 | 7111
7111
7111
7111 | 7111
7111
71111
71111
71111 | 7111
7111
7111
7111
7111 | 7111
7111
7111
7111
7111 | 871119
871119
871119
871119
871119
871119
871119 | 7112
7112
7112
7112
7112
7112 | | leg | 06
08
09
10
01
01 | 000000 | 03
00
01
01
01 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 03
00
00
00
00
01 | 01
03
01
01 | | series | 001
001
003
003
003 | 000000
4444000 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000
003
043
043 | km in leg 15.29 13.72 19.09 1.19 2.39 2.39 2.39 2.39 3.19 10.87 11.36 11.24 11.36 11.24 11.36 11.24 11.36 11.35
11.35 position latitude longitude 33333 3 3 3 3 **≯** ≯ ⋧ **≥** ≥ 3333 3 3 3 3 15 24 24 27 50 54 00 49 53 42 44 58 03 08 21 37 0 1016 20 25 04 09 11 15 21 24 29 117 117 117 u u u u מממ п d d п ¤ n n 47 47 48 01 07 13 56 58 10 $\frac{19}{20}$ 00 05 05 17 27 31 03 03 03 002 04 04 04 03 03 course (deg.) beauf. no. sun position horz. vert. 001 001 001 001 002 002 003 02 02 01 01 01 01 01 02 02 $\frac{01}{01}$ 07 08 08 08 09 09 10 11 11 observer codes left right rec 233.52 233.52 233.73 233.73 233.889 223.889 223.889 223.889 223.889 223.889 220.337 220.337 220.337 220.337 220.337 220.337 220.337 220.337 220.337 23.889 23.889 23.889 23.889 23.889 23.889 23.889 23.889 23.889 23.889 23.889 23.889 24.633 25.037 26.337 26.337 27.199.82 28.8 speed km/hr 871120 871120 871120 871120 871120 871120 871120 871120 871120 871121 871122 871122 871122 871122 871123 871122 leg series | km
in leg | 4.77
2.86
5.09
4.13 | 146 | - (4. | কক | ω | ו ניז ני | 1 4 | 014 | 0.4.4 | 4. (1) | ויויט | انسنم | ., ., | | 10,10 | | 7. 7. | · • • • • | | . ~. | ` ~. | 0.0 | | | : | ``` | | • | |---------------------------|------------------------------|----------|------------|----------------------|------|------------|-------------|----------------------|----------|------------|----------------------|------------|---------|-------------|----------------|-------------------|----------|----------------------------|-------|-------------------|------------|----------------------|-----------|------------------|----------------------|------------|----------|----------| | tion
longitude | | 117 43 w | 17 48 | 117 50 w
117 54 w | | 117 04 w | | 118 12 w
118 25 w | 118 36 W | 41 | 120 59 w
120 43 w | 120 41 w | 20 40 | 120 01 W | 19 5 | | 119 50 W | 119 47 W | 7 7 | 119 42 W | | 119 35 w
119 34 w | | | 119 29 w
119 27 w | 119 27 w | 0 0 | 118 45 W | | position
latitude long | | 05 01 n | 5 01 | 05 01 n
05 01 n | 1 | 05 05 n | | 05 07 n
05 08 n | 05 11 n | 5 12 | 07 25 n
08 53 n | 09 04 n | 13 | 10 49 n | 0 58 | | 11 12 n | 11 17 n
11 22 n | 1 6 | 11 28 n | | 11 41 n
11 43 n | ı | | 12 00 n
12 04 n | 12 09 n | 5 t | 13 51 n | | course
(deg.) | 274 | 274 | 280 | 280
290 | 290 | 7000 | 290 | 290 | 290 | 290
290 | 355
002 | 002
003 | 000 | 020 | 020 | 020 | 020 | 020 | 024 | 024 | 024
024 | 024 | 018 | 018 | 018 | 018
018 | 028 | 920 | | beauf. | 4444 | 7 4 5 | 4 4 | 4 4 | 44 | + 4* - | t 4 | 4 4 | 44 | 4 4 | n n | ოო | mm | mn | nmr | n m | m m | . m m |) M (| ทพ | ന ന | നന | ı (1) (1) | n m | നന | സ്ന | י ניז ני | ĸ | | position vert. | 01 | 17 5 | 7.10 | 010 | 01 | | 01 | | 02 | | | | | | | | 05 | | | | | | | | | 02 | 03 | 03 | | sun po | 07 | 80 | 80
0 | 08 | 80 | | 10 | | 10 | | | | | | | | 03 | | | | | | | | | 07 | 033 | 03 | | codes | 499 | 200 | 31 | 63 | 55.5 | 200 | 64
64 | 63 | 55
64 | 64
69 | 31
56 | 63
31 | 64
4 | 201 | 9 4 6 | 60
60 | 31 | 26.0 | 63 | 64
64 | 31 | 55 | 56 | 63
63 | 64
69 | 55 | 69
31 | 63 | | server contract | 31 | 64.4 | 69 | 56 | 63 | 220 | 7 E | 564
564 | 63
31 | 31
64 | 59 | 26
69 | 31 | 189 | 317 | 64
64 | 69 | 555 | 90,0 | H H
M M | 64
69 | 63 | 10 r | 01 O | 31 | 64 | 69 | 26 | | obse
left | 69 | 317 | 64
64 | 55 | 56 | 63 | 6
4
4 | 31 | 56
69 | 69
31 | 64
63 | 55 | 69 | 26 | 60 | 31 | 64 | 0
1
1
1
1
1 | 55 | 69
60
90 | 31 | 200 | 63 | 5
5
7
7 | 31 | 31
56 | 31
64 | 55 | | speed
km/hr | 19.08
19.08 | 0.00 | 8 | 7.7 | | . 4. | 4.4 | 4.8 | 8.6 | 9.7 | 9.6 | 20.8 | 600 | ຸ
ຜູ້ໝໍາ | ວອດ
ບໍ່ແນ້າ | ສ
ຕິພິ | 7. | | 0 00 | 8.7 | 8 8 | 7.4 | | 7.4 | 7.5 | 7.5 | 2.5 | 7:5 | | date | 871122
871122
871122 | 711 | 77 | 711 | 711 | 711 | 711 | 111 | 711 | 711 | 711 | 711 | 711 | 111 | 717 | $\frac{711}{711}$ | 711 | 717 | 11 | $\frac{711}{711}$ | 711 | 711 | 77 | 7117 | 121 | 711 | 711 | 711 | | leg | 03 | 01 | 03 | 4.0 | 90 | 01 | 03 | 010 | 03 | 0.5 | 101 | 000 | 04 | 353 | 03 | 0.5 | 100 | 200 | 03.0 | 04 | 00 | 0 0 0
4 7 | 90 | 07 | 10 | 110 | 07 | 03 | | series | 07 | 0.00 | 8 8
0 0 | 80 | 886 | 260
200 | 60
0 | 110 | T T | | 01 | 000 | 00 | 017 | 010 | 01 | 000 | 7 6 6 | 03 | 03
04 | 04 | 4.00 | 0.4 | 0 0 4 | 000 | 04
05 | 01 | 01 | Table 2. (continued) | I I |----------------|----------|------|----------|--------------|-----|----------|------|-------------|---------------|----------|-----|------------|----------------|----------|-------|------------|----------|-------|-------|------------------|-----|-------|-------|----------|-------|-------|-----|----------|-----|-------------|-----|----------|------|------------------|------|------------|-------|----------------------|-----------|--------| | km
in leg | 12.58 | 0,0 | 0 00 | 0 | 2.3 | 4. 1 | ે ∝ | 2 2 | 0. | 9. | 9. | ડ. 4 | | ᅼ | 2.1 | úω | 2.1 | 4. | ٦. | ٠٣. | 4. | ω ς | ? - | . –. | 0 | 00 | . œ | 9. | 9.4 | . m | 9. | وذم | . 4 | 1.4 | 30 | ٠. 4 | 2.9 | ri vi | r. | • | | tion | 118 43 w | 0,00 | 118 37 W |)
) | | 118 31 w | | 118 28 W | 1 | 118 27 w | 8 | | 18 21 | 118 19 w | 18 17 | | 118 10 W | | 18 00 | 117 34 W | | 17 33 | 17 31 | 117 32 W | 15 08 | 15 07 | 000 | 114 55 W | | 114 46 W | 1 | 114 41 W | 4 30 | 114 32 W | 14 3 | | 14 23 | 114 17 w
114 11 w | 114,07 14 | ,
, | | posi | 13 55 n | | 14 UI n |)
 | | 14 22 n | | 14 27 n | 2 | 14 30 n | 4 3 | | 4 35 | 14 39 n | 4 43 | | 14 57 n | | 7 | 16 46 n | , | 50 | 200 | 16 56 n | 5 03 | 5 01 | 000 | 14 58 n | | 14 52 n | 1 | 14 51 n | 40 | 14 43 n | 4 42 | | 4 34 | 14 29 n
14 24 n | 1.4 21 n | 101 | | course (deg.) | 028 | 028 | 820 | 028 | 028 | 028 | 0.20 | 0 00 | 028 | 028 | 020 | 020 | 000 | 020 | 020 | 020 | 020 | 020 | 020 | 012 | 012 | 012 | 012 | 127 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 134 | 134 | 134 | 134
134 | 134 | Too | | beauf. | mm | 4. | 4 4 | + 4 + | 4 | 4. | 4 < | + 4 | * * | 4 | 4 | 4. | t 4 | 4 | 4 | 4. | 4 4 | 4 | 4 < | 1 4 | 4 | 4. | 4 4 | r 10 | 2 | (7) | 20 | m | 4. | 4 4 | 4 | 4. | 4.4 | 4 | 4. | ተ < | 4 | 4 K | m r | n | | position | 02 | 02 | 0.5 | 10 | 01 | 01 | ΠO | 0.1 | 01 | 01 | 01 | | | 01 | 01 | 01 | 0.02 | 02 | | | | 03 | 03 | S | 03 | | | | | | 03 | | To | | | | 01 | 01 | 03 | | | sun po | 03 | 03 | 03 | 0.0 | 04 | 04 | 0.5 | 5 | 0 0 | 05 | 90 | | | | | | 07 | | | | | 03 | 03 | 20 | 11 | | | | | | 12 | | 0.1 | | | 6 | 000 | 03 | 03 | | | codes | 55 | 56 | 69 | 31 | 64 | 63 | 63 | 22 | יז כ
יז ני | 55.5 | 55 | 22 | ט ע | 69 | 69 | 31 | 6.0 | 63 | 63 | 5
5
5 | 63 | 63 | 37 | 75 | 64 | 64 | o o | 55 | 56 | 63 | 64 | 69 | 31 | 55
55 | 55 | 9 10 | 63 | 69 | 31 | 31 | | erver co | 63 | 55 | 64 | 69 | 31 | 56 | 56 | n
n
n | 2 6 | 63 | 63 | 55 | U I
U II | 64 | 64 | 69 | 3. L | 200 | 56 | 5
5
5
7 | 56 | 56 | 60 | 6 4 | 31 | 31 | 64 | 63 | 55 | 56
10 | 31 | 64 | 60 | 63 | 63 | 5 2 | 56 | 31 | 69 | ,
D | | obse
left | 56 | 63 | 31 | 5.1
64 | 69 | 55 | 55 | 7
7
1 | י ה
ה | 56 | 26 | 63 | 50 | 31 | 31 | 64 | א
הע | 55 | 52 | 90 | 55 | 55 | 64 |
31 | 69 | 69 | 31 | 56 | 63 | 5
0
0 | 69 | 31 | 64 | 56 | 26 | 63 | 55 | 31 | 64 | 04 | | speed
km/hr | 17.96 | 6 | | n m | 2 | 6.7 | 2.0 | | | | | <u>د</u> . | יי
ממ | ຸຕ | 8 | യ (
പ്. | ກແ |) (D) | 60 | מ בי | | 7.4 | - 6 | - 8 | | | | | 8 | ω, | | 8 | | | | ~ . | ,, | 18.71 | 8 | ω, | | date | 1 4- | 17 | 1: | 7 = | H | 11 | 77 | 7: | 7 - | 11 | 11 | Ξ | 7 5 | 11 | 711 | 711 | 35 | 11 | 711 | 717 | 711 | 711 | 711 | 777 | 711 | 711 | 713 | 711 | 711 | 711 | 717 | 7.1 | 711 | 7.7 | E | 711 | 77 | 871128 | 5 | 711 | | leg | 01 | 03 | 04 | 0 O | 03 | 0.4 | 05 | 00 | 0 0 | 25 | 02 | 03 | 04 | 02 | 01 | 02 | 03 | 02 | 03 | 04 | 02 | 03 | 04 | OT
O | 01 | 01 | 02 | 5 5 | 02 | 03 | 0.5 | 01 | 01 | 0.0 | 04 | 05 | 00 | 01 | 03 | 04 | | series | 02 | 00 | 02 | 5 C | 03 | 03 | 03 | 600 | 0.0 | 0.0 | 04 | 0.4 | 400 | 000 | 90 | 90 | 90 | 02 | 0.7 | 07 | 01 | 01 | 01 | 020 | 01 | 02 | 00 | 0.0 | 03 | 03 | 03 | 0.4 | 05 | 0
0
0
1 | 020 | 0.5 | 000 | 90 | 90 | 90 | | (continued | | |------------|--| | Table 2. | | | km
in leg | 21.48 |) (| 7 | 4 L | 7 5 | + ⊢ | - 0 | \sim | _ | ٠ 4 | ٠, | ٧, | 4 | 0 | æ | 9 | 0 | 3 | 1 | | -10 | 2 | æ | 9 | 6 | 10 | ١ (| 2 | 9 | 4 | | 3 | 3 | 5 | 2 | 5 | (| , – | 10 | 10 | 1 00 | 2 | 4 (4 | Y | > < | 40 | 7 5 | 4 5 | ~ C | α | 2 | - | 7 | · | |---------------------------|---------|-------------|--------|------|------------|-------|-----|---------|--------|------|----------------|-----|----------|---------|-----|---------|-----|------|--------------|-------------|--------|-----|---------|-----|-----|------------|-------|------|------|------|------|------|------|---------|-----|-----|---------|------------|-----|----------|---------|------|---------|--------|---------------|------|-----|------|------------|---------|---------------|-------|---------|------| | ıde | 9 M | | | | ≥ ;
- u | | | ა
გ | | | . | | | ≽
∞ | | 2 M | | | : 3 | | | | × | | | | | | | | | | | 5 W | | | J W | | | | : 3 | | 77 | | ; | 3 | | | | 7. | | | M O | | | tion
longitud | 114 0 | #
Q | | 12 2 | 1110 | 7.4 | , | 112 2 | | c | 110 01 | 7 | , | 112 1 | | 112 13 | | 2 | 111 | ન
- | | | 111 5 | | | 11 4 | 777 | 11 4 | 11 3 | 11 3 | 11 3 | 11 3 | 10 0 | 109 5 | | | 109 4 | 1 | | 09 3 | 109.5 | | 109 21 | 7 | 1001 | 7 60 | | | | 100 | 0 | 10 3 | 110 4 | | | position
latitude long | 14 20 n | 9 | | 2 52 | 12 22 11 | 7.4.7 | | 12 44 n | | 2 43 | 10 10 11 | 7.7 | | 12 46 n | | 12 51 n | | 2 58 | 13 04 n | 7 | | | 13 08 n | | | 3 13 | 7 - | 3 T | 3 18 | 3 22 | 3 26 | 3 28 | 4 39 | 14 45 n | 1 | | 14 59 n | | | 20 | 15 10 1 | 1 | 15 16 n | F | - | 2 | | | | 15 21 2 | 10. | 6 21 | 16 24 n | 1 | | course
(deg.) | 136 | 300 | 9 0 | 0 0 | 0 0 | 000 | 089 | 106 | 106 | 040 | 100 | 040 | 049 | 049 | 049 | 049 | 049 | 049 | 040 | 0 0 | 040 | 049 | 049 | 049 | 049 | 040 | 7 5 | 049 | 049 | 049 | 049 | 049 | 049 | 049 | 040 | 040 | 049 | 049 | | 049 | 040 | 010 | 040 | 0 7 0 | 040 | 0.40 | 040 | 0.40 | 0.00 | | 049 | 285 | 285 | 200 | | beauf.
no. | 60 % |) u | י נ |) r |) (| ŋ (| n (| m | m | ۳ ر | י נ | n (| . | m | m | 3 | m | 0 | 10 | ۹ ۲ | 7 (| 2 | 2 | 2 | 0 | 3 0 | ۷ (| 7 | 7 | 7 | 2 | 7 | 2 | 7 | 100 | | ı co |) (r |) (| , 0 | | 3 0 | 10 | ۹ - | ٦ , | 7 - | ٦ ، | 7 (| ۷ ۲ | ۷ - | - 1 }− | · (2) | 7 | 'n | | position
vert. | 0.2 | 60 | 3 6 | 200 | 2 6 | 700 | 70 | | 03 | 10 | 7.5 | 07 | TO | 01 | 01 | 01 | 01 | 10 | 100 | 10 | , | 10 | 0.1 | 02 | | 00 | 9 0 | 20 | 02 | 03 | | | 03 | 02 | 02 | 000 | 10 | 10 | 15 | 15 | 100 | 15 | 1. | 15 | 7.5 | 100 | 20 | c | 200 | 200 | 3 6 |) | | CO | | sun pos
horz. | 03 | 1,1 | 1 r | | 11 | 70 | ΤO | | 01 | 1 0 | 2 6 | 000 | 03 | 03 | 03 | 04 | 0.5 |) C | 90 | | | | 90 | | | 90 | 2 (| 90 | 90 | 90 | | | 02 | 02 | 000 | 030 | 030 | 000 | 0 0 | 7 7 | 40 | י ני | 2 0 |) C | 0 L | 0 0 | 000 | 90 | 200 | 0 0 | 00 | 5 | | 90 | | codes
t rec. | 31 | 2 6 | ת
ה | 0 7 | 200 | 9 6 | 31 | 63 | 63 | 20 | 3 6 | 21 | 22 | 52 | 26 | 69 | 31 | 4 4 | , , | 00 | 00 | 63 | 55 | 26 | 20 | 2 6 | 5 (| 60 | 31 | 64 | 63 | 63 | 31 | 26 | 63 | 7.0 | 3.5 | 7 7 | 10 | # 0
V | יוני | 200 | ט ע | ה
ה | 0,0 | 7.5 | 40 | 40 | 600 | ט ע | ۶ د
۲ | 55 | 26 | 23 | | observer ce
eft_right | 69 | א כ
ז ני | 2 (| 0 H | 2 | 40 | 60 | 26 | 5 | 14 | ט ע
ט ע | 00 | 63 | 63 | 55 | 64 | 69 | , ۲ | ין ע
ע גע | ט פ
ז ני | 0 1 | 26 | 63 | 55 | יני | אור
אור | 7 | 64 | 69 | 31 | 26 | 26 | 69 | 55 | 56 | 63 | 69 | 2,5 |) (| 7 4 | י
ער | י ע | 2 5 | 200 | 200 | , c | 7 T | 31 | # V | t u | ე თ
ე დ | 63 | 55 | 1 4 | | obse
left | 64 | ין
טער | 7 4 | מ מ | 25 | 31 | 40 | 52 | r
L | ט נ |) L | 22 | 26 | 26 | 63 | 31 | 64 | 0 | ט ני | ין
מי | ٠
١ | 22 | 26 | 63 | 63 | 2 6 | 2 5 | 31 | 64 | 69 | 22 | 55 | 64 | 63 | 2 2 | 2 2 | 64 | 5 0 | 0 0 | 5 6 | 1 7 | ט ע | א
ר | ם
כ | 0 5 | # C | מ פ | 9 6 | 21 | 77 | 6.4 | 26 | 63 | ט נ | | speed
km/hr | 18.15 | ο α
ο α | | | 0 0 | , c | 2 | 5.5 | 6 | | - r | : | : | 7.7 | 7:7 | 7.0 | 7.0 | , ~ | , α
, υ | ם
פכ | 0 (| 8.5 | 8.5 | 8.5 | 2 | , u | זינ | | 7.9 | 7.9 | 7.9 | 7.9 | 8.3 | 8.8 | 8 | 8 | | , c | , , | . a | | | , c | , , | 0.0 | 7. | - [| 7. | | | | 3.7 | 3.7 | | | date | 871128 | 7.5 | 1 - | 717 | 777 | 77/ | 7 | 711 | 711 | 111 | 717 | 77 | 77 | 711 | 711 | 711 | 711 | 711 | 111 | 717 | 77 | 711 | 711 | 711 | 711 | 711 | 7 7 7 | 7 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 711 | 117 | 11 | 711 | 111 | 711 | 1 - | 17 | 7 - | 1; | Ξ: | 11 | 1.5 | 11 | 112 | 712 | 11.2 | | leg | 05 | ٠, | 4 0 | ე. < | . | ٠, | | m | 4 | · |) - | ٠, | ν, | - | ~ | 8 | 4 | ינכ | י נ | 2 6 | ٠, | m | - | 2 | ~ | ١ - | H 1: | Ω : | LO. | _ | _ | ~ | | _ | ~ | . ~ | | | 3 ~ | ٠. | | ٠, | a | ٠, | N 0 | ٠. | | ^ 1/ | ٠. | | ٠. | | | | | series | 06 | 7 - | 4 5 | 7 5 | 7 6 | 200 | 70 | 02 | 00 | 30 | 8 0 | 200 | 0.3 | 04 | 04 | 04 | 04 | 04 | 700 | * 5 | ** | 04 | 0.5 | 02 | 0.5 | מני |) L | 0.0 | 02 | 0.5 | 90 | 90 | 01 | 02 | 0.5 | 00 | 03 | 000 | 0 0 | 20 | , L | י ני | 7 4 | 9 9 | 900 | 9 (| 0 0 | 9 9 | 900 | 200 | 20 | 01 | 02 | 000 | Table 2. (continued) | in leg | 7.64 | Ξ. | +-4 | ٥. | 8.7 | `` | ٠. ٥ | ٠ u | ٥,٢ | • | 9 | 9 | ε, | 9. | 9. | m, c | 0.0 | | 7.7 | . 6 | ω, | ω. | χ | 9 | 5.8 | 4. | ۍ ۱ | 0 4 | . & | 6. | <u>ه</u> ، | o m | .5 | 4. | υr | Ĵά | . α | 2. | ي د | | 50 | ٦. | ა
ი | |---|--------------------|-------|-----|----------|-------|------|------|-----|-----|-----------|------------|----------|-------|----------|-----|-------|-----------------|-------|-------------|----------|-------|-----|----------|------------|-----|-----|-------|----------|------|-----|------------|--------------|-----|-----|------------|---------|----------|----------|--------|-------|-------|------------|--------| | longitude | 110 48 w | 11 02 | | 111 09 w | 11 12 | 1 18 | | | | 111 40 53 | 04 11 | | 11 49 | 111 51 W | ; | 11 51 | 11 55 | 11 09 | 12 00 | 112 12 W | 14 19 | . (| 114 30 W | | | . (| 14 50 | 115 00 w | 2 | | 7.
1.3 | 115 23 W | | Ĺ | M TE CTT | | | 115 41 w | | | 15 50 | 115 58 W | 17 59 | | latitude longi | 16 26 n
16 34 n | 6 34 | | 16 36 n | 6 38 | 6 33 | | | | 16 15 2 | ۲
ک | | 6 47 | 16 49 n | | 6 50 | 000 | 200 | 20 0 | 16 54 n | 7 29 | 1 | 17 33 n | | | | 7 40 | 1/ 42 n | 1 | | | 17 41 n | | | 1/43 n | | | 17 46 n | | | 7 50 | 17 49 n | 38 | | (deg.) | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 282 | 707 | 2000 | 280 | 285 | 285 | 285 | 285 | 285 | 282 | 782 | 285 | 285 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 283 | 289 | 289 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 297 | 297 | 297 | 297 | 297 | 187 | | no. | 2.0 | 2 02 | m | m | m - | m | m i | n | n r | J (1 |) (· | n m | m | 3 | 4 | 4. | 4. 4 | 4.4 | * < | ۲ 4 | 'n | ហ | n u | ט גר | υ | 5 | ហេ រ | O 10 | ט נט | Ŋ | ហេ | n n | 2 | ហ | Λ μ | ט וכ | υN | 50 | ΩL | ט גר | 'nή | <u>د</u> د | 4. | | position
vert. | | | 01 | 01 | 0.1 | 01 | 01 | TO | 0.1 | TO | | 0.5 | | | 02 | 02 | 02 | | | | | | ć | 200 | 02 | | | | 0.1 | | | | | 01 | 010 | TO | | 02 | CO | 9 | | | | | sun por | | | | | | | 60 | | - | | | 10 | | | | 10 | | | | | | | | 00 | 07 | | | | 08 | | | | | 60 | 60 | 20 | | 10 | , | | | | | | codes | 64 | 55 | 26 | 56 | 63 | 64 | 69 | 900 | 31 | 7 15 | ט ע | ט ער | 20 | 26 | 26 | 63 | 63 | 04 | 0
7
1 | 31 | 69 | 31 | 63 | ין
ני | 56 | 26 | 69 | 99 | 64 | 64 | 64 | ט גר
צ ור | 56 | 56 | 69 | ה
סע | 31 | 64 | 63 | 0 6 | 55 | 69 | 96 | | right | 31 | 63 | 22 | 52 | 26 | 31 | 64 | 64 | 900 | 200 | ט ת
ט ת | ין
ני | 7 2 | 55 | 22 | 56 | 200 | 31 | 64 | 64 | 64 | 69 | 9 1 | 90 | 55 | 52 | 64 | 64 | 3.5 | 31 | 331 | 00
63 | 55 | 55 | 64 | 40 | 69 | 31 | (A) | ט ני | 63 | 64 | 25 | | left | 69 | 56 | 63 | 63 | 52 | 69 | 31 | 31 | 64 | 40 | 000 | 3 6 | 63 | 63 | 63 | 55 | 52 | 9 6 | 31 | 000 | 31 | 64 | 51 | 27 | 33 | 63 | 31 | 31 | 50 | 69 | 61 | 2,5 | 63 | 63 | 31 | 3.1 | 54
64 | 69 | 55 | 7 C | 56 | 31 | 63 | | speed
km/hr | 18.33 |
 | 3.5 | 3,1 | 3.1 | 9.0 | 0.6 | 9.0 | 9.0 | 200 | , c | | | 0.3 | 0.3 | 0.1 | ص
س د | n . | 7.0 | ი. გ | 9.6 | 9.6 | 9.4 | νο
4. 4 | 4.6 | 9.4 | 9.6 | 20°0 | 4.4 | 4.6 | 4.6 | n c
o o | 9.0 | 9.0 | 0.0 | | 0.6 | 9.8 | о
О | ກຸດ | 9.0 | 9.6 | 9.2 | | date | 871201 | 712 | 712 | 712 | 712 | 712 | 712 | 712 | 712 | 777 | 717 | 712 | 712 | 712 | 712 | 712 | $\frac{712}{2}$ | 712 | 712 | 717 | 712 | 712 | 712 | 717 | 712 | 712 | 712 | 712 | 713 | 712 | 712 | 712 | 712 | 712 | 712 | 717 | 712 | 712 | 712 | 7 T Z | 712 | 712 | 712 | | Leg | 04 | 01 | 02 | 03 | 01 | 03 | 03 | 04 | 0.5 | 90 | 700 | 9 0 | 0.0 | 01 | 02 | 01 | 01 | 05 | 603 | 0 C | 01 | 02 | 03 | 0.4 | 90 | 0.7 | 08 | 01 | 00 | 03 | 04 | 0.5 | 05 | 03 | 0.4 | 200 | 0.0 | 01 | 02 | 200 | 0.2 | 01 | 01 | | series | 02 | 0.5 | 04 | 04 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.0 | 90 | 9 9 | 90 | 07 | 0.7 | 90 |
60 | 60 | 60 | n 0 | 010 | 01 | 01 | T. F | 01 | 0.1 | 01 | 02 | 0 0 | 03 | 03 | 03 | 04 | 04 | 04 | 0.4 | 0.4 | 0.5 | 00.0 | O C | 0 0 | 90 | 0.1 | | \Box | |--------| | O | | üe | | in | | بتر | | gon | | Ö | | _ | | <. | | • | | le | | ò | | | | | km
in leg | 2 2 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 | • | |-----------|-------------------|--|--------| | | tion
longitude | 118 03 w
118 18 w
118 29 w
118 29 w
118 29 w
118 29 w
118 29 w
118 29 w
118 20 w
118 15 w
118 15 w
115 13 w
115 13 w
115 13 w
115 13 w
115 33 w
115 33 w
115 33 w | TZ TZ | | | posi
latitude | 18 45 n n n n n n n n n n n n n n n n n n | 2.6 | | | course
(deg.) | 2887
2887
2887
2887
2887
2887
2887
2887 | _ | | | beauf. | + + + + + + + + + + + + + + + + + + + | .79 | | | sition
vert. | 00000000000000000000000000000000000000 | 0.5 | | | sun po | 00000000000000000000000000000000000000 | 02 | | | odes
rec. | | 69 | | | erver c
right |
 | 64 | | | obs | | 31 | | .nued) | speed
km/hr | 100.00888888888888888888888888888888888 | α
ω | | (continue | date | 8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871203
8871204
8871204
8871204
8871204
8871204
8871204
8871204
8871204
8871204
8871204
8871204
8871205 | 712 | | 2. | leg | 00000000000000000000000000000000000000 | 03 | | Table | series | 00000000000000000000000000000000000000 | 03 | Table 2. (continued) | | | | | the last name and other Person in | The same and the name of | | | | | | | | | |------------|---------|--------|-------|-----------------------------------|--------------------------|------|--------|----------------|--------|--------|---------|--------------------|--------| | Del seines | امر | date | apped | obser | ver co | des | od uns | sition | beauf. | course | | ition | κ | | 1 | χ.
1 | 3 | km/hr | left | left right rec. | rec. | horz. | horz. vert. | no. | (deg.) | | latitude longitude | in leg | | | | | | | | | | | | | | | | | 03 | 03 | 871205 | 18.89 | 2 | 64 | 69 | 05 | 02 | 2 | 063 | | | 3./8 | | 3 6 | 3 | 071205 | 000 | 2,1 | 27 | 09 | 00 | 0.5 | ~ | 063 | | | 1.57 | | co | * | 507710 | 70.07 | 7. | 5 | 5 | 3 | | , - | 1 | | | 70 7 | | 04 | 01 | 871205 | 18.15 | 55 | 56 | 63 | 90 | 01 | 4 | 322 | _ | | 4.64 | | י ני | 5 | 871205 | 18 | IC
IC | r
G | 63 | 90 | 0.1 | 4 | 355 | _ | | 0.60 | | 70 | 1 | COSTIO | 1 |) | 3 |) 1 | | | • | L | | | 100 | | 90 | 0 | 871205 | 18.15 | 26 | 63 | 55 | 90 | TO | 4 | 322 | _ | | T6 - 0 | | 7.0 | 5 | 871205 | 17 96 | 7, | 64 | 69 | 0.7 | 01 | 4 | 355 | | | 3.59 | | 5 | 7 | COSTIO | 0001 | 1 | , | | - ! | | | L | • | | c | | 08 | 01 | 871205 | 17.96 | 31 | 64 | 69 | 0.7 | 0.1 | 4 | 300 | | | 66.33 | | 80 | 0 | 871205 | 17 96 | 64 | 69 | 31 | 0.7 | 01 | 4 | 355 | 19 14 n | 112 05 w | 11.98 | | 2 6 | 9 (| 100 | 1 | , | , , | 79 | 0 | 0 | 7 | 355 | | | 3,59 | | 20 | 03 | COZT/S | 06./1 | 0 7 | 7,7 | 40 | 000 | T ₀ | + | 7 1 | 1 | ı | 1 (1 | | 60 | 0 | 871205 | 17.96 | 55 | 56 | 63 | 80 | 02 | 4 | 355 | 19 26 n | 112 05 W | 11.08 | | 0 0 | 100 | 971205 | 17 96 | 1 | 63 | 7 | 080 | 0.5 | 4 | 355 | | | 10.78 | | 00 | 20 | COSTIO | 71.70 | 2 | 3 | 1 | | 1 | | 1 | | | | | 60 | 03 | 871205 | 17.96 | 63 | 55 | 26 | 80 | 02 | 4 | 355 | | | 11.08 | | 60 | 0.4 | 871205 | 17.96 | 63 | 55 | 56 | 80 | 02 | 4 | 355 | 19 44 n | 112 06 W | 0.30 | species code groups, encountered in the 8 through December 10, 1987. classified by during August eastern tropical Pacific Marine mammal sightings, 3 Table Sightings by Species | | 1 1 | l | | |--------------------------------|-------------|---------------|---| | ~ | size es | low |
163.0
163.0
171.0
189.0
189.0
189.0
189.0
16.0
16.0
16.0
16.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175. | | species code: | mean school | best | 202.0
202.0
202.0
2228.0
232.0
6.00.0
193.0
193.0
250.0
250.0
250.0
119.0
119.0
119.0
271.0
271.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119.0
119. | | beds | proportion | (% of school) | 100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
10 | | | longitude | deg min (| 109 48 W 1109 48 W 1109 17 W W 1109 17 W W 1109 17 W W 1111 39 W W 1101 4 30 W W 1102 28 1102 28 W 1102 28 W 1103 28 W 1104 20 | | SPOTTED DOLPHIN
ATTENUATA) | latitude | deg min |
1100008884
400008884
400008884
400008884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
400009884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000098884
4000009884
4000009884
4000009884
4000009884
4000009884
400000 | | RE SPOTTED DO
LLA ATTENUATA | perp. | dist.(km) | 1.6.1-4.2.6.00.2.6.0.6.0.0.0.0.0.0.0.0.0.0.0.0. | | : OFFSHORE S
(STENELLA | detected | by | 00000000000000000000000000000000000000 | | species | beauf. | number | $\qquad \qquad $ | | | sition | vert. | 00 01 00 00 00 00 00 00 00 00 00 00 00 0 | | | sun posí | horz. | 004
000
000
000
000
000
000
000
000
000 | | | sight | number | 00000000000000000000000000000000000000 | | | leg | | 00000000000000000000000000000000000000 | | | series | | 000 000 000 000 000 000 000 000 000 00 | | | date | yrmody | 8470813
8708815
8708815
8708815
87088113
87088119
8708821
8708821
8708822
8708822
8708822
8708822
8708822
8708822
8708822
8708822
8708822
8708822
8708822
8708822
8708825
8708825
8708825
8708825
8708825
8708825
8708825
8708825
8708825
8708825
8708825
8708825 | Table 3. (continued) | | 7 | size est | low | 9 | 0 | • | · և | | 9 | 4. | 89. | ٠
د | , 0 | · ~ | 54. | | 23 | · - | . 99 | 36. | 7 | ٠
ش | 15. | 000 | | 9 | i | 47. | - < | | ω. | 9. | 77. | m (| | | • • | 0 | 35.0 | • | |-----------|-------------------------------|-------------|---------------|-------|-------|------------|-------------|-------|-----------------|-------|-------|--------|------------|-------|-------|-------|----------------|----------------|----------------|-------|-------|--------|-------|---|---------|-------|-------|-------|-------|------------|-------|-------|--------|-------|----------------|-------|------|-------|-------------|-------------------| | | pecies code: | mean school | best | | 0 | <u>.</u> . | ,
,
, |
M | | 4. | ٠. | · L | · - | | 7 | 8. | ა ს | N | | 8 | ö | oi. | ∾. | م | - ~ | | 9 | તં. | ታ < | | М | 6 | ٠
ش | | | ٠, | | 0 | 42.0 | | | | eds | proportion | (% of school) | 0 | 75. | 0.0 | | 00. | 0 | 26. | 78. | 000 | | 00. | 00. | 00 | 00 | o. 4 | 9 | 00. | 00. | 00 | · · | 00. | | 0 | 5. | 47. | | | 54. | 0 | 37. | | 000 | | 0 | 00. | 00.2 | ~ | | | | longitude | deg min | 01 34 | 01 44 | 01 55 | | 02 08 | 02 10 | 03 21 | 03 48 | 04.00 | 14 35 | 10 18 | 10 12 | 10 19 | 06 50 | 03 48
03 26 | 97 18 | 94 53 | 94 55 | 94 31 | 94 08 | 57 T6 | 87 33 | 94 14 | 94 09 | 97 42 | 24 00 | 99 50 | 99 59 | 01 59 | 01 46 | 01 48 | 0.4 40 | 27 90 | 5.2 | 05 11 | 105 00 W | ا
۲ | | Species | SPOTTED DOLPHIN
ATTENUATA) | latitude | deg min | 4 40 | 4 45 | 4 46 | 7 4 7 | 4 29 | 4 23 | 2 35 | 1 49 | 38 | 1 47 | 0 29 | 0 20 | 0.27 | 0 28 | 700 | 4 14 | 5 32 | 5 34 | 5.41 | 5 54 | را
د د د د د د د د د د د د د د د د د د د | 2 4 7 | 0 51 | 2 18 | 7 36 | 1 L | 22 | 9 10 | 7 13 | 0 11 | 57. | 2 K | 7 7 7 | 7 11 | 7 26 | 17 46 n | 1 | | ру | RE SPOTTE
LLA ATTEN | perp. | dist.(km) | • | ٠ | ٠ | • | | | • | • | ٠ | • | | • | • | • | • | | | • | • | • | • | • | | • | • | • | | | • | ٠ | • | • | • | | ٠ | 7.7.
2.5 | • | | Sightings | s: OFFSHORE S
(STENELLA | detected | ьу | 89 | 05 | 02 | 7 7 7 | 67 | 04 | 04 | 04 | /9 | 000 | 04 | 04 | 89 | 05 | 0
4
4 | 5.1 | 05 | 29 | 05 | 51 | 40 | 0 IC | 31 | 56 | 91 | 000 | ر
در در | 64 | 56 | 55 | 31 | ס
ת
אינע | 0,00 | 64 | 69 | 55
64 | н | | | species | n beauf. | . number | ∺ | 7 | Ο, | -1 ← | - 0 |) - | 3 | 4 | 4. | t 4 | ٠ 4 | 4 | 4 | m· | 4 4 | · - | ' (T) | က | 2 | m r | .n c | 7 - | 4 | ю | 40 | 7 C | ٦. | 1 72 | ന | 4 | 4. | 4· C | ח ני | n (% | 2 | m m | 1 | | | | position | z. vert | Ä | | 12 | -i c | òò | 0 | | | | Ċ | 02 | | 0 | 01 | o o | | 03 | | 01 | | 5 | 200 | 0 | 0 | | - | | 01 | | 01 | | | o | | | 010 | | | | | sight sun | number horz | 0 | ₩. | 13 12 | -10 | | 0 | | 02 | 03 | | 03 09 | | | 05 01 | | | 01 01 | | 05 01 | (| 0 (| 0.5 0.9 | 0 | 0 | 0 | 08 | | 12 09 | | 01 04 | 0 | • | 00 | 0 | 0 | 05 05 | 1 | | | | leg | ū | 02 | 02 | 01 | 200 | 0.5 | 00 | 02 | 04 | 03 | N 00 |) | | 0.1 | 01 | T [0 | 10 | 020 | 0.1 | 0.5 | 90 | 03 | T 0 | 04 | 90 | 03 | c | 200 | 0.5 | 02 | 60 | 05 | 200 | 7 C | 02 | 03 | 03 | > | | | | series | | | | | | | | | | | 0.0 | | | 0.2 | 04 | 0.4 | 0.4 | 01 | 02 | 04 | 05 | 03 | 0 0 | 0.0 | 03 | 02 | 7 | 0 0 | 04 | 90 | 01 | 04 | 000 | 7 0 | 000 | 0.5 | 04 | כ | | | | date | yrmody | 7090 | 7090 | 7090 | 7070 | 7090 | 7090 | 7090 | 7090 | 7090 | 7091 | 7091 | 7091 | 7091 | 7092 | 2607 | 7092 | 7092 | 7092 | 7092 | 7092 | 7092 | 7101 | 7102 | 7102 | 7102 | 710Z | 7102 | 7102 | 7103 | 7103 | 7103 | 7110 | 7110 | 7110 | 7110 | 871103 | OTT/ | Table 3. (continued) | | 7 | ol size est | low | 137.0 | 262.0 | 290.0 | 75.0 | 57.0 | 185.0 | 450.0 | 113.0 | 47.0 | 245.0 | 152.0 | 217.0 | 410.0 | 257.0 | 329.0 | 122.0 | 288.0 | 105.0 | 17.0 | 933.0 | 547.0 | 362.0 | |----------------------|----------------------------|--------------|---------------|-------|-------|-------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------| | | ies code | mean school | best | 152.0 | 293.0 | 317.0 | 88.0 | 0.79 | 230.0 | 542.0 | 128.0 | 57.0 | 278.0 | 170.0 | 250.0 | 467.0 | 289.0 | 380.0 | 153.0 | 318.0 | 127.0 | 22.0 | 1058.0 | 650.0 | 410.0 | | | species | proportion m | (% of school) | 95.0 | 63.3 | 97.3 | 100.0 | 100.0 | 40.0 | 57.5 | 80.0 | 75.0 | 100.0 | 36.7 | 55.0 | 5.7 | 44.2 | 100.0 | 40.8 | 100.0 | 100.0 | 100.0 | 7.7 | 26.7 | 30.0 | | | | longitude | deg min | 27 | 22 | 29 | 106 55 W | 03 | 47 | 26 | 02 | 33 | 27 | 53 | 59 | 24 | 23 | 07 | 35 | | 22 | 17 | 37 | 23 | 14 | | oecies | SPOTTED DOLPHIN ATTENUATA) | latitude | deg min | 17 | 43 | 90 | 01 26 n | 27 | 38 | 38 | 99 | 13 | 31 | 03 | 60 | 11 | 34 | 20 | 51 | 42 | 27 | 46 | 47 | 52 | 22 | | Sightings by Species | | perp. | dist.(km) | 1.9 | 3.3 | 3.4 | 0.4 | 2.8 | T: | e.0 | 3.5 | 0.0 | 3.2 | 4.6 | 3.5 | 0.0 | 2.7 | 3.5 | 5.0 | 5.1 | 4.2 | 2.7 | 6.9 | 6.3 | 5.5 | | Sight | | detected | þу | 55 | 69 | 31 | 55 | 63 | 69 | 64 | 56 | 69 | 26 | 55 | 56 | 26 | 55 | 64 | 52 | 64 | 31 | 55 | 31 | 26 | 69 | | | species | beauf. | number | 4 | ٣ | 7 | 4 | 4 | ហ | N. | S. | 4 | 4 | e | 3 | 3 | 4 | က | 3 | 7 | 2 | Ŋ | 5 | 5 | 4 | | | | position | vert. | 0.1 | | | | | 01 | 12 | 01 | 03 | 01 | 02 | 02 | | 01 | | 03 | 03 | | | | | 01 | | | | d uns | horz. | 0.1 | | | | | 08 | 60 | 10 | 90 | 90 | 10 | 10 | | 02 | | 11 | 02 | | | | | 01 | | | | sight | number | 0.1 | 10 | 01 | 01 | 02 | 02 | 90 | 02 | 03 | 02 | 11 | 12 | 02 | 05 | - 07 | 02 | 01 | 02 | 04 | 02 | 90 | 03 | | | | leg | | 15 | 01 | 02 | 01 | 01 | 01 | 01 | 05 | 01 | 02 | 01 | 01 | 0.1 | 0.7 | 04 | 04 | 01 | 04 | 02 | 90 | 02 | 60 | | | | series | | 0.1 | 10 | 01 | 0.5 | 04 | 90 | 0.2 | 08 | 01 | 03 | 60 | 10 | 0.5 | 0.5 | 90 | 0.1 | 01 | 02 | 03 | 04 | 0.5 | 02 | | | | date | rmody | 71110 | 71115 | 71116 | 71119 | 711119 | 71119 | 71119 | 71119 | 71120 | 71120 | 71120 | 71120 | 71125 | 71128 | 71128 | 71129 | 71130 | 71201 | 71202 | 71202 | 71202 | 71204 | Table 3. (continued) | | е | l size est | low | 27.0 | 48.0
166.0
278.0 | 290.0 | | |----------------------|------------------------------------|---------------------------------|----------------------------|--------|----------------------------------|--------------------------------------|--| | | species code: | nean schoo | best | *0 0 | 93.0 | 317.0 | | | | beds | proportion mean school size est | deg min (% of school) best | | 12.5 | 100.0 | | | | | | | | 116 25 W
113 45 W
110 05 W | 091 29 w
101 59 w | | | ecies |
ROSTRIS) | - 03 | deg min | | 10 01 n
10 42 n
11 04 n | 13 16 n
07 06 n | | | Sightings by Species | species: SPINNER DOLPHIN (SPECIES) | perp. | dist.(km) deg min | | 0.80 |
4. | | | Sight | SPINNE | detected | by | | 51
05 | 67
31 | | | | species | heanf | number | | 44 | ഗനവ | | | | | ÷ ; | Sight sun position | | 0.5 | 12 | | | | | | | 1101.2 | 11 | 60 | | | | | | signt | namper | 03 | 07
05
01 | | | | | | leg | | 02 | 007 | | | | | | series | | 90 | 00000 | | | | | | date series leg | yrmody | 870817 | 870819
870819
870828
871116 | | Table 3. (continued) | | | י ע | | | | | | | | | | | | | | | | | |----------------------|--------------------------------------|-------------|---------------|----------------------------------|------------------|----------------|----------|-------|--------------|--------------|-----------|--------|------------------|-------|----------|-------|-------------------------------|--| | | ιΛ | ol size est | low | 32.0
210.0
75.0 | 29.0 | 80.0 | 39.0 | 41.0 | 1058.0 | 71.0 | 315.0 | 26.0 | 577.0 | 487.0 | 188.0 | 30.0 | 10.0
55.0
35.0 | | | | species code: | mean school | best | 0.0*
250.0
110.0 | 14.0 | | 47.0 | 56.0 | 1350.0 | 82.0
82.0 | 422.0 | 29.0 | 662.0 | 514.0 | 217.0 | 35.0 | 12.0
60.0
42.0 | | | | obds | proportion | (% of school) | 100.0 | | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
100.0
100.0 | | | | | longitude | deg min | 117 12 W
117 14 W
117 15 W | 17 | 08 | 112 13 W | 04 | 090 38 w | 50 | 41 | 23 | 5.4
4.3 | 04 | 38 | 54 | 23
18
25 | | | pecies | HIS) | latitude | deg min | 27
16
11 | 08 | 36 | 08 | 48 | 020 | 46 | 37 | 15 | 15 | 47 | 47 | 42 | 28 22 n
30 35 n
30 43 n | | | Sightings by Species | COMMON DOLPHIN
(DELPHINUS DELPHIS | perp. | dist.(km) deg | 0.0 | 2.4 | 1.1 | 1.8 | 9.0 | 1.5 | 0.7 | 4. c. | , et « | 0.T | 6.7 | 3.7 | 3.6 | 0.2
0.7
0.1 | | | Sighti | • | detected | by d | 22
67
04 | 68 | 05 | 51 | 40 | 0 0 0
4 1 | 05
22 | 68
7.5 | 69 | 0
2
2
8 | 56 | 6
4 դ | 55 | 55
64 | | | | species: | beauf. | number | 000 | т с ^х | 1 M N | m m | m | 70, | н н | H 4 | • ന • | ~ ~ | 10 | m | U 44 | ט ט ט | | | | | position | vert. | 02 | 03 | 000 | 02 | 01 | 020 | 03 | 000 | f 1 | 01 | 02 | 60 | 000 | 01 | | | | | od uns | horz. | 000 | 60 | 10
04
04 | 10 | 02 | 00 | 10 | 10 |) (| 11 | 01 | c | 0.4 | 60 | | | | | sight | number | 01
03
06 | 01 | 04
14 | 0.5 | 60 | 12 | 03
01 | 07 | 07 | 3 E | 22 | 01 | 05 | 03
01
02 | | | | | leg | | 02
04
01 | 03 | 03 | 02 | 01 | 01 | 01 | 0.0 | 03 | 0.1 | 01 | 01 | 16 | | | | | | series | | 01
02 | 01 | 04
14 | 03 | 80 | 12 | 01 | 03 | 03 | 0.7 | 12 | 01 | 03 | | | | | | date | rmody | 70808
70808
70808 | 70809 | 70811 | 70812 | 70926 | 70926 | 70927 | 70927 | 71016 | 71018 | 71018 | 71022 | 71113 | 71208
71209
71209 | | Table 3. (continued) | | | st | <u> </u> | | |----------------------|---|------------------------------------|--------------------|---| | | ٠
. ن | size e | low | 0.0*
15.0
32.0
7.0
142.0 | | | species code: | mean school size est | best | 0.0*
20.0
38.0
9.0
157.0 | | | eds | proportion | (% of school) best | 100.0
100.0
100.0
100.0
100.0 | | | | longitude | deg min | 078 49 w
078 57 w
078 41 w
078 47 w | | pecies | DOLPHIN
) | latitude | deg min | 08 30 n
08 39 n
08 04 n
07 42 n
19 08 n | | Sightings by Species | species: COASTAL SPOTTED DOLPHIN (S.A. GRAFFMANI) | perp. | dist.(km) deg min | 0.00 | | Sight | : COASTA
(S.A. | detected | | 22
255
56
54
31 | | | species | sun position beauf. detected perp. | rt. number by | 183888 | | | | sun posit | horz. ve | | | | | sight | number horz. | 12
06
03
09
13 | | | | leg | | 01
02
02 | | | | series | | 03
06
08 | | | | | rmody | 71001
71009
71009
71009
71009 | Sightings by Species | . 10 | ol size est | low | 163.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0 | |------------------------------------|--------------|------------------------
---| | species code: | mean school | best | 202.0
24.0
25.0
25.0
25.0
25.0
25.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0 | | spec | proportion n | (% of school) | 100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0 | | | longitude | deg min | 1109 24 W W 1100 25 W W 1100 25 W W 1100 25 W W 1100 25 W W 1002 25 W W 1002 25 W W 1002 25 W W 1002 25 W W 1003 2 | | SPINNER DOLPHIN
A LONGIROSTRIS) | latitude | deg min | 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | perp. | dist.(km) | | | ≖ ~ | detected | $\mathbf{p}\mathbf{y}$ | 414887441487888441171171484471171884469999999999999999999999999999999999 | | species | n beauf. | . number | | | | position | vert | 00 01 00 003333333333333333333333333333 | | | ans | horz | 4 | | | sight | number | 000 000 000 000 000 000 000 000 000 00 | | | leg | | 8 1110001000000000000000000000000000000 | | | series | | 40000000000000000000000000000000000000 | | | date | yrmody |
870813
870819
870819
8708819
8708821
8708821
8708822
8708825
8708825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870825
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900
870900 | Table 3. (continued) | | | ů
t | and the same t | | | | | | | | | | | |-------------------------|------------|----------------------|--|---------|----------|---------|---------|----------|---------|---------|---------|----------|--| | : 10 | | mean school size est | low | 262.0 | 410.0 | 335.0 | 163.0 | 257.0 | 122.0 | 933.0 | 547.0 | 362.0 | | | species code: 10 | | nean scho | best | 293.0 | 467.0 | 370.0 | 188.0 | 289.0 | 153.0 | 1058.0 | 650.0 | 410.0 | | | sbec | | proportion n | (% of school) best | 36.7 | 94.3 | 100.0 | 100.0 | 55.8 | 9.5 | 92.3 | 73.3 | 70.0 | | | | | longitude | deg min | 1 | 119 24 W | _ | - | 114 23 w | ٠, | ٠, | | 115 14 w | | | DOLPHIN | ROSTRIS) | latitude | deg min | 07 43 n | 12 11 n | 14 59 n | 14 50 n | 14 34 n | 12 51 n | 17 47 n | 17 52 n | 18 22 n | | | EASTERN SPINNER DOLPHIN | Tra Longii | berb. | dist.(km) deg min | 3.3 | 0.0 | 8.4 | 0.3 | 2.7 | 5.0 | 6.9 | 6.3 | 5.5 | | | : EASTER! | (STENE) | ion beauf. detected | þу | 69 | 26 | 31 | 64 | 55 | 55 | 31 | 26 | 69 | | | species: | | beauf. | vert. number | ъ. | e
E | 2 | 4 | 4 | ٣ | 2 | 2 | 4 | | | | | sition | | | | | | 01 | 03 | | | 0.1 | | | | | sun posit | number horz. | | | | | 0.5 | 11 | | | 0.1 | | | | | sight | number | 10 | 02 | 02 | 03 | 02 | 02 | 05 | 90 | 03 | | | | | leg | | 01 | 01 | 02 | 01 | 07 | 04 | 90 | 02 | 60 | | | | | series | | 10 | 0.5 | 02 | 04 | 0.5 | 01 | 04 | 0.5 | 02 | | | | | date | rmody | 71115 | 71125 | 71128 | 71128 | 71128 | 71129 | 71202 | 71202 | 71204 | | Table 3. (continued) | | | | ŀ | | | | | | | | | | | |----------------------------|------------------------|------------------------------|--------------------|---------|---------|---------|--------|----------|---------|--------|---------|----------|----------| | 11 | | size est | low | 171.0 | 189.0 | 400.0 | 407.0 | 566.0 | 450.0 | 113.0 | 30.0 | 152.0 | 217.0 | | species code: 11 | | mean school size | best | 228.0 | 232.0 | 575.0 | 495.0 | 682.0 | 542.0 | 128.0 | 36.0 | 170.0 | 250.0 | | spec | | proportion m | (% of school) best | 20.5 | 26.0 | 35.0 | 5.3 | 84.0 | 42.5 | 20.0 | 100.0 | 63.3 | 45.0 | | v | | longitude | deg min | | | | | 097 18 w | | | 29 | 111 53 W | 111 59 w | | WHITEBELLY SPINNER DOLPHIN | ROSTRIS) | latitude | deg min | 08 38 n | 09 19 n | 00 57 n | | 04 14 n | 01 38 n | | 02 49 n | | 03 09 n | | ELLY SPIN | STENELLA LONGIROSTRIS) | perp. | dist.(km) deg min | 1.5 | 4.6 | 3.4 | 1.1 | 2.9 | 0.3 | 3.2 | 0.3 | 4.6 | 3.5 | | S: WHITEB | (STENE | sun position beauf. detected | þУ | 04 | 66 | 04 | 04 | 51 | 64 | 56 | 55 | 55 | 26 | | species: | | beauf. | number | 3 | 7 | 4 | 4 | 4 | 5 | 5 | 4 | m | က | | | | sition | number horz, vert. | 12 | | 02 | | 01 | 12 | 01 | 01 | 02 | 02 | | | | d uns | horz. | 0.5 | | 01 | | 07 | 60 | 10 | 60 | 10 | 10 | | | | sight | number | 03 | 01 | 03 | 05 | 04 | 90 | 07 | 60 | 11 | 12 | | | | leg | | 02 | | 01 | 01 | 10 | 01 | 03 | 02 | 0.1 | 01 | | | | series | | 04 | | 04 | 90 | 04 | 07 | 08 | 90 | 60 | 10 | | | | date | yrmody | 870815 | 870817 | 870922 | 870922 | 870924 | 871119 | 871119 | 871120 | 871120 | 871120 | Table 3. (continued) | Species | | |-----------|--| | by | | | Sightings | _ |-----------------------------|-------------|---------------|-------------|-------|-------|-------|----------------|---------------|-------|-------|---------|--------|-------|-------|--------------|----------------|-------|-------|------------|-------|--------|--------------|-------|-------|--------------|-------|-------|----------|------------|-------|-------|-------|----------------|-------|----------------------|---| | : 13 | ol size est | Low | | ÷ ~ | | 4 | 01 | in a | 55. | ω. | ٠
د | ٠
ر | | Ξ. | 6 | 'nc | | Ξ. | .i c | | ٠
ش | ∾.~ | | ~ | | 110 | | <u>.</u> | ÷- | + .c | | ·: | · · | 01 | 39.0 | | | species code | mean school | best | • | | | 27. | 20. | | | 05.0 | o d | ų. 4 | . 2 | ω. | <u>.</u> | ນໍα | . 6 | Ϊ. | ∞ < |
ო | φ, | ص | | 0 | | | . TO | <u>.</u> | | · « | · . | 0. | · 10 | ٠. | 25.0 | | | eds | proportion | (% of school) | 00. | 000 | 00. | 00. | 00 | 96 | 000 | 00. | 000 | | 000 | 00 | 00 | | 00. | 00. | 900 | 00 | 00. | 000 | 00: | 00. | 000 | 000 | 00. | 00. | 2 5 | | 00. | 00. | . 00 | 00. | 100.0 | • | | | longitude | deg min | 13 25 | 09 20 | 13 26 | 10 17 | 13 23 | 14 27 | 10 19 | 10 14 | 62 90 | 000 | 03 11 | 92 26 | 97 51 | 94 LL
93 44 | 91 37 | 91 01 | 88 31 | 88 04 | 80 48 | 79 45 | 79 32 | 79 34 | 80 04 | 82 25 | 84 51 | 85 13 | 87 53 | 37 31 | 90 05 | 90 06 | 39 55
39 55 | 91 17 | 091 14 w
091 23 w | 1 | | I
3A.) | latitude | deg min | 1 02 | 38 | 7 44 | 1 02 | 5 37 | 1 45
2 8 8 | 0 23 | 0 34 | /T 0 | 200 | 1 13 | 3 43 | 200 | 107 | 7 24 | 7 50 | 207.0 | 7 23 | 0.0 | 5 27 | 60 5 | 1 50 | # 4
8 C | 3 2 | 1 19 | 36 | 400 | 54 | 35 | 39 | 10 | 3 49 | 08 58 n
08 42 n | 1 | | PED DOLPHIN
COERULEOALBA | d perp. | dist.(km) | • | | • | • | • | • | ٠. | • | • | | | | • | | • | • | • | | | | | | | | | | | | | | | | 0.6 | | | STRI
(S. | detected | by | 00 4
7 C | 04 | 04 | 51 | 04 | 7 89 | 66 | 04 | 04
6 | 22 22 | 22 | 05 | 51 | 67 | 04 | 04 | / Q | 05 | 02 | 31 | 26 | 31 | ი
ი
ი | 69 | 31 | 31 | ን ኒ
ን ኒ | 5,0 | 31 | 63 | 31 | 64 | 31
63 | ! | | species | beauf. | number | 8 8 | a w | | m | φ, | 4 ւ | 4 | 4 (| 'nυ | n m | m | 4 | 4 . c | າ ຕ | 7 | m, | ⊣ ⊷ | · — | ഗദ | m (N | ı m | 2.5 | 7) (1 | | m · | m r | o c | ٦ ٢ | 2 | ~ ~ | 7 m | 2 . | N N | I | | | sition | vert. | 03 | | | | | | | 05 | | | | 05 | 01 | 02 | | 01 | 0 T | 03 | | 03 | 02 | 01 | 70 | 02 | | | 0.1 | 1 | | | 02 | | 02 | | | | od uns | horz. | 10 | | | , | - - | 12 | 60 | 60 | 9 6 | 01 | | 01 | 0.1 | 0.7 | | 05 | 10
03 | 04 | ç | | 60 | 10 | T 0 | 01 | | | 60 | | 03 | 03 | 07 | | 08 | | | | sight | number | 15 | 04 | 08 | 90 | T0 | 5 [| 0.5 | 01 | 000 | 050 | 0.7 | 01 | 03 | 08 | 01 | 10 | 18 | 26 | 05 | 01 | 03 | 02 | 11 | 07 | 03 | 04 | 0 0 | 0.5 | 03 | 40. | 15 | 04 | 00
00 | | | | leg | | 01 | 02 | 04 | 01 | | 12 | | 0.7 | , [| 01 | 0.5 | 60 | 0 C | 90 | 01 | 0.0 | 0.0 | 0.5 | 01 | 01 | 90 | 04 | 0 60 | 03 | 01 | 01 | 7 [0 | 010 | 0.1 | 01 | 02 | | 05
05 | | | | series | | 15 | | | | C | 010 | | 01 | 5 | 03 | 80 | 01 | 0 O | 90 | 01 | 00 | 10 | 13 | 00 | 0.10 | 0.2 | 03 | 9 C | 04 | 02 | 04 | 20 | 03 | 03 | 04 | 10 | , | 03
03 | | | | date | yrmody | 870811 | 7081 | 7081 | 7081 | 709T | 7091
7091 | 7091 | 7091 | 2007 | 7092 | 7092 | 7092 | 2007 | 7092 | 7092 | 7092 | 7092 | 7092 | 7093 | 7101
7101 | 7101 | 7101 | /101
7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | 7101 | /101
7101 | | Sightings by Species | 13 | l size est | low |
130.0
1424,00.0
150.0
160.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0
170.0 | 71.80 | |-----------------------------|-------------|--------------|--|--------------------------------------| | scies code: | mean school |) best | 36.0
82.0
82.0
82.0
93.0
106.0
106.0
106.0
107.0
107.0
108.0
108.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0 | 0000 | | eds | proportion | (% of school | | 0000 | | | longitude | deg min | 0991 339 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 10 41
11 49
15 57
12 32 | | (A) | latitude | deg min | 008 008 009 009 009 009 009 009 009 009 | 6 22
6 22
8 31
8 52 | | PED DOLPHIN
COERULEOALBA | l perp. | dist.(km) | WO4WW4H4O0WHWW4H4W00MU00HO0HHOWHU0W00W | | | s: STRIPI
(S. CC | detected | by | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 55
55
55 | | specie | n beauf. | number. | るるまるうみろうますまるままるのうろのみみずうますみみろうのでする。 | 1 CM CM CM | | | position | . vert | 112
001
001
001
001
001
001
001
001
001 | | | | uns | horz | 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01 | | | sight | number | 000000000000000000000000000000000000000 | 0010001 | | | leg | | 00000000000000000000000000000000000000 | 001 | | | series | | 00000000000000000000000000000000000000 | 001 | | | date | yrmody | 871018
871018
871021
8710221
8710221
8710223
8710233
8710233
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871023
871113
871113
871113
8711123
8711123
8711123 | 7120
7120
7120
7120
7120 | Table 3. (continued) | | species code: 13 | proportion mean school size est | (% of school) best low | 100.0 69.0 60.0
100.0 40.0 33.0 | |----------------------|--|---|--|------------------------------------| | | | sun position beauf. detected perp. latitude longitude | deg min | 112 05 w
112 04 w | | pecres | A) | latitude | number horz. vert. number by dist.(km) deg min | 19 04 n
19 09 n | | stancings by species | species: STRIPED DOLPHIN (S. COERULEOALBA) | l perp. |
dist.(km) | 1.8 | | Thra | STRIPI | detected | by | 55 | | | species | beauf. | number | 44 | | | | sition | vert. | 01 | | | | | horz. | 90 | | | | sight | number | 04
05 | | | | leg | | 01
01 | | | | series leg | | 05 | | | | date | Yrmody | 871205
871205 | | d | |----------------| | Ũ | | Ħ | | Z | | | | نډ | | П | | on | | Ü | | _ | | | | • | | $^{\circ}$ | | | | (1) | | $\vec{\vdash}$ | | | | | | 9 | | Tab | | | | est | | | | | | | | | | | | | | | | | | |--------------------------------|---------------------|------------------------------|-------------------|----------|------------|----------------|----------|---------|--------|--------|--------|---------|--------|--------|--------|--------|--------------|-------|--------| | 15 | | | low | 14.0 | 5.0 | 1.0 | 8.0 | 5.0 | 0.6 | 0.97 | 31.0 | 7.0 | 14.0 | 5.0 | 24.0 | 12.0 | 12.0 | 2.0 | 14.0 | | species code: 15 | | mean school size | best | 17.0 | 0.9 | 2.0 | 10.0 | 5.0 | 10.0 | 87.0 | 34.0 | 8.0 | 15.0 | 5.0 | 27.0 | 13.0 | 13.0 | 2.0 | 18.0 | | peds | | proportion me | (% of school) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | longitude | deg min | 113 18 W | 104 15 W | | 117 24 w | 31 | | 03 | 35 | 0.5 | | 20 | 18 | | 11 | | | | OLPHIN | (SIS) | latitude | dist.(km) deg min | 07 45 n | 28 | 14 42 n | | 04 29 n | 31 | 41 | 27 | 11 23 n | 52 | 13 | 55 | 45 | 03 | 03 | 51 | | species: ROUGH-TOOTHED DOLPHIN | (STENO BREDANENSIS) | perp. | dist.(km) | ۳ | | 0.00 | 1.1 | 9.0 | 0.3 | 6.4 | 0.1 | 8. | 4.2 | 0.1 | 1.9 | 2.2 | 6.0 |
 | 0.0 | | : ROUGH- | (STENO | sun position beauf. detected | by | 7.9 | 000 | 0.0 | 04 | 05 | 55 | 63 | 31 | 69 | 69 | . v. | 3.5 | 10 | 6.4 | 4.4 | 63 | | species | ı | beauf. | vert. number | - | ٦ ٣ | , - | 1 4 | ~ | ı M | · C | 1 m |) (| 3 (r |) (" | 4 | ٠ ٦ | + (r |) (r |) M | | | | sition | vert. | 5 | 7 C | 0.0 | 4 | | | 0.1 | 0.1 | 3 6 | 5.5 | 100 | 3 | .0 | 1 | | 03 | | | | d uns | horz. | 1.0 | 9 α
- C | 2.0 | 5 | | | 60 | 000 | 000 | 9 0 | 20 | | 0 | P
H | | 03 | | | | sight | number horz. | 90 | 000 | 7.0 | 000 | 20 | 1 2 | 2 6 | 5 - | | 1 0 | 000 | 50 | 3 5 | # C | 9 6 | 01 | | | | leg | | 100 | Ç | | 10 | ; C | 0.1 | 7.0 | 100 | 3 0 | 200 | 100 | 9 0 | 9 6 | 5 6 | 7 0 | 03 | | | | series | | 0 | • | | 0.5 | 3 00 | 0 - | 2 0 |)
(| 000 |)
(| 000 | 200 | 3 0 | 200 | 7 0 | 01 | | | | date | yrmody | 4000 | 8/0810 | T700/0 | 870916 | 870908 | 871009 | 871013 | 071019 | 071010 | 971103 | 071103 | 071117 | 0/111/ | 071133 | 7.5 | 871126 | Table 3. (continued) | | . 18 | ol size est | low | | 0.7 | | ٠. | 67.0 |
 | | | 2.0 | | 0 | 94.0 | 0.9 | 70°0 | 0.0 | *0.0 | 0.4 | 89.0 | 19.0 | m | ٠.
د | 4 + | | ∾. | | | • | 18.0 | m 0 | 9 | |-----------|--|-------------|---------------|-------|--------------------|------------------|-------|--------------|------|-----------------------|-----------------|--------------------|-------|----------|-------|-------------|------|------|--------------|------------|------|--------------|------|---------|------|------|--------------|--------|------|--------------|------------------|------------------|----------| | | species code: | mean school | best | 1 . | 0.11
9.0 | | | 91.0 | | | | *0.0 | 294.0 | 50.0 | 101.0 | (| 63.0 | 13.0 | 18.0 | * *0.0 | 7 | 22.0
70.0 | 1.0 | *0.0* | 7.0° | 23.0 | 75.0 | \sim | 16.0 | 0.0
0.0 | 25.0 | 13.0 | 20.0 | | | spec | proportion | (% of school) | | 0 | 000 | 00. | | 000 | | ; -i | 100.0 | ; ci | 25. | | 100.0 | | 50. | 50. | | 6 | | 46. | | 00. | 14. | | | 00. | - | 200 | _ | 100.0 | | | | longitude | deg min | 13 50 | 112 16 W | 11 51 | 11 3 | 35 | ı O | 3 E | 29 | (2) R | 31 | 9 5 | 10 | 43 | 23.7 | 24 | 30 | 1.5
4.5 | 48 | J 4 | 28 | 03 | 36 | - | 14 | 03 | 26 | 4 | 7
7
7
8 | 4 1 | 090 46 w | | Species | PHIN
ATUS) | latitude | deg min | 2 56 | 19 00 n
19 11 n | 8
26
76 | 7 44 | 5 40 | 9 31 | 0
5
5
5
5 | 5 11 | 5
11
5
73 | 51 | 0.05 | 4 00 | 4 01 | 00 | 3 46 | 3 14 | 3 00 | 1 49 | 37 | 3 08 | 34 | 32,4 | 7 30 | 7 36 | 42 | 3 41 | 7 56 |) | | 07 31 n | | ф | BOTTLENOSED DOLPHIN
(TURSIOPS TRUNCATUS | perp. | dist.(km) | | | • | • • | | • | | | • | | | | • | | | | | | | | | | | | | | | | 1.0 | | | Sightings | ш <u> </u> | detected | by | 22 | 04 | 0 4
51 | 67 | 04
68 | 29 | 04 | 89 | 51
05 | 21 | 23 | 67 | 6
8
7 | 0.0 | 02 | 22 | 047 | 04 | 68
68 | 68 | 21 | 89 | 29 | 0 0 | 22.4 | 52 | ស
ស
ម | 56 | 31 | 63 | | | species | beauf. | number | | იო | რ ო |) (M) | m m | m F | ⊣ m | 2 | 0 r | m | יט ני |). 4· | 4° c | , w | m | ረን ኒ | ე ო | 4.0 | ი ⊢ | 0 (| × ~ | 2 2 | 4,1 | ω < | r ~ | 7 | ⊢ ~ |) M | ~ ~ | m | | | | osition | vert. | 12 | 00 | 12 | 03 | 03 | 12 | 01 | 05 | 000 | 12 | 70
0 | 3 | 05 | 1 | | 12 | | | 02 | 12 | 70 | | 12 | | | 1 | 15 | 05 | 12 | | | | | od uns | horz. | | 10 | | | | 12 | | | | 173 | | | 900 | | , | 디 | | | | 12 | | | 03 | 12 | | (| 12 | 7 [| 12 | | | | | sight | number | 90 | 0.4 | 10 | 14 | 01 | 02 | 0.4 | 01 | 9 6
0 | 10 | 11
11 | 90 | 00 | 010 | 02 | 03 | 04 | 05 | 90 | 14 | 02 | 03 | 06 | \ 0 | 01 | 03 | T0 | 90 | 01 | 03 | | | | leg | | 03 | 01 | 000 | 01 | 04 | 02 | 07 | 0.8 | 01 | 04 | | 02 | 020 | 01 | 02 | 07 | 03 | 04 | 04 | 05 | 7.0 | 01 | 05 | 03 | 01 | 01 | 13 | 04 | 01 | 0.2 | | | | series | | 80 | 03 | 90 | 80 | 01 | 04 | 0.0 | 01 | /0
0
0 | 60 | | 90 | 11 | 01 | 05 | 0.04 | 03 | 03 | 03 | 08 | T0 | 07 | 03 | 04 | 010 | 02 | 03 | 0.5 | 01 | 0.5 | | | | date | yrmody | 7081 | 7081 | 7081
7081 | 7081 | 7081
7081 | 7081 | 7082 | 7082 | 7082
7082 | 7082 | 7082 | 7082 | 7082 | 7082 | 7082 | 7082
7082 | 7082 | 7090 | 7092 | 7092 | 7092 | 7092 | 7100 | /100
7100 | 7100 | 7100 | /100
7101 | 7101 | 871013
871014 | 7101 | | 18 | l size est | low | 22.0 | 39.0 | 72.0 | 10.0 | 17.0 | 25.0 | 56.0 | 15.0 | 13.0 | 2.0 | 137.0 | 0.9 | 21.0 | 7.0 | 34.0 | |--|------------------------------|-------------------|----------|----------|--------|--------|--------|--------|---------------|--------|----------|--------|--------|--------|--------|--------|---------| | species code: | mean school size | best | 25.0 | 42.0 | 79.0 | 13.0 | 18.0 | 29.0 | 26.0 | 17.0 | 13.0 | 2.0 | 152.0 | 0.9 | 25.0 | 8.0 | 38.0 | | pads | proportion m | (% of school) | 77.5 | 66.7 | 100.0 | 40.0 | 57.5 | 50.0 | 100.0 | 37.7 | 100.0 | 100.0 | 5.0 | 100.0 | 47.3 | 100.0 | 100.0 | | | longitude | deg min | w 20 060 | M 60 060 | | | | 21 | 00 | 49 | 093 48 W | 40 | | 34 | 14 | | | | PHIN
ATUS) | latitude | deg min | 55 | | 21 | 90 | | | 22 | 07 | 12 49 n | 26 | 17 | 15 | | 6 55 | 17 43 n | | BOTTLENOSED DOLPHIN (TURSIOPS TRUNCATUS) | l perp. | dist.(km) deg min | 0.5 | 2.7 | 3.6 | 9.0 | 1.1 | 4.4 | 1.0 | 2.9 | 0.2 | 0.1 | 1.9 | 0.0 | 0.0 | 0.0 | 2.2 | | party | sun position beauf. detected | by | 69 | 26 | 69 | 26 | 63 | 64 | 55 | 26 | 56 | 55 | 55 | 55 | 63 | 31 | 31 | | species: | beauf. | vert. number | 2 | 2 | 2 | m | 7 | 7 | 7 | m | 7 | 4 | 4 | 4 | 2 | 4 | 2 | | | sition | vert. | 12 | 12 | 12 | 02 | | 01 | 02 | 02 | | 02 | 01 | 0.1 | | 03 | | | | | horz. | 12 | 03 | 12 | 07 | | 01 | 010 | 08 | | 10 | 01 | 0.2 | ! | 03 | | | | sight | number horz. | 10 | .07 | 08 | 14 | 6 | 9 | 20 | 60 | 0.1 | 04 | 0.1 | 20 | 0.0 | 0.1 | 03 | | | leg | | | 02 | 01 | 0.1 | | 0.1 | 01 | 01 | 01 | | 7. | 0 | 1 | 0.4 | 01 | | | series | | | 05 | 90 | 10 | | 60 | , | 11 | 01 | | 01 | 40 | 1 | 10 | 00 | | | date | yrmody | 871017 | 871017 | 871017 | 871017 | 871018 | 871018 | 871018 | 871021 | 871023 | 871101 | 871110 | 871111 | 871115 | 871127 | 871202 | Table 3. (continued) | | | , |--------------------------------------|-------------|---------------|----------|--------|--------|--------|--------|--------|--------|--------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|----------| | 21 | size est | low | 2.0 | 57.0 | 40.0 | 0.9 | 94.0 | 14.0 | 18.0 | 0.6 | • | 4.0 | 4.0 | | • | 8.0 | • | | 18.0 | | 7.0 | | | 14.0 | | 11.0 | • | 12.0 | | species code: | mean school | best | 2.0 | 70.0 | 50.0 | 0.9 | 101.0 | 15.0 | 20.0 | 13.0 | 18.0 | 2.0 | 0.9 | 5.0 | 1.0 | 10.01 | 7.0 | 0.6 | 19.0 | 25.0 | 8.0 | 17.0 | 5.0 | 15.0 | 0.6 | 13.0 | 8.0 | 14.0 | | eds | proportion | (% of school) | 50.0 | 42.5 | 75.0 | 100.0 | 27.0 | 75.0 | 55.0 | 50.0 | 50.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 50.0 | 100.0 | 0.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | longitude | deg min | 110 16 W | | 38 | 20 | 08 | 23 | 53 | | 30 | 02 | 21 | 03 | 04 | 07 | 14 | 35 | 20 | 28 | | 49 | 54 | 18 | 42 | 097 10 w | 12 | 109 22 w | | (2) | latitude | deg min | 14 58 n | | 05 | 02 | 00 | 00 | 29 | 46 | 1,4 | 17 | 44 | 39 | 27 | 32 | 48 | 32 | 15 | 44 | 05 | 0 | 42 | 31 | 22 | 43 | 26 | 15 | | RISSO'S DOLPHIN
(GRAMPUS GRISEUS) | l perp. | dist.(km) | 0.0 | 2.0 | 0.0 | 0.1 | 0.1 | 5.7 | 0.1 | 4.8 | 1.0 | 0.4 | 0.1 | 0.2 | 0.3 | 0.3 | 1.3 | 0.2 | 0.3 | 0.0 | 0.3 | 2.9 | 0.5 | 1.2 | 0.0 | 0.3 | 2.2 | 3.2 | | | detected | by | 68 | 040 | 29 | 89 | 29 | 02 | 0.2 | 0.5 | 22 | 04 | 04 | 04 | 66 | 51 | 68 | 04 | 64 | 26 | 63 | 26 | 31 | 64 | 66 | 55 | 69 | 22 | | species: | tion beauf. | number | 4- | -l M | n | e | 4 | 4 | m | m i | ന | m | 1 | 4 | г | H | 4 | 2 | ო | ო | Э | ٣ | 2 | 7 | ~ | ю | 4 | 7 | | | position | vert. | 12 | 01 | 01 | | | , | 02 | - 1 | 12 | 12 | 01 | 0.1 | 03 | 03 | | | 01 | 02 | 02 | 03 | 03 | 01 | 01 | | | 01 | | | od uns | horz. | 10 | 05 | 12 | | | ; | 90 | ļ | , . . | 11 | 0.2 | 0.7 | 04 | 03 | | | 90 | 11 | 80 | 08 | 08 | 01 | 90 | | | 0.5 | | | sight | number |
02 | 0.4 | 01 | 04 | 90 | 80 | 10 | 05 | 03 | 01 | .05 | 03 | 24 | 23 | 01 | 04 | 02 | 90 | 08 | 60 | 02 | 04 | 90 | 0.5 | 01 | 04 | | | leg | | 07 | 010 | | 01 | 02 | 03 | 01 | 02 | 0.7 | 08 | | 0.7 | | 02 | 90 | 02 | 15 | 04 | 01 | 01 | 02 | 08 | | 01 | 90 | 02 | | | series | | 03 | 0.4 | | 04 | 90 | 08 | 11 | 02 | 04 | 03 | | 02 | | 12 | 04 | 0.7 | 01 | 0.5 | 10 | 11 | 02 | 02 | | 04 | 01 | 0.5 | | | date | yrmody | 870813 | 870823 | 870826 | 870826 | 870826 | 870826 | 870826 | 870827 | 870827 | 870907 | 870908 | 870920 | 870927 | 870927 | 870929 | 870929 | 871012 | 871012 | 871021 | 871021 | 871023 | 871024 | 871027 | 871114 | 871117 | 871130 | Table 3. (continued) | | est | | | |---|---|--------------------|----------------------| | 22 | lsize | low | 11.0 | | species code: 22 | mean school size est | best | 12.0 | | pads | proportion m | (% of school) best | 100.0 | | IN
NS) | sun position beauf. detected perp. latitude longitude | deg min | 115 06 W
115 16 W | | species: PACIFIC WHITE-SIDED DOLPHIN (LAGENORHYNCHUS OBLIQUIDENS) | latitude | deg min | 27 48 n
28 19 n | | C WHITE-S | l perp. | dist.(km) deg min | 0.0 | | : PACIFI | detected | þу | 31
63 | | species | beauf. | vert. number | 5.7 | | | sition | | 03 | | | d uns | horz. | 04
09 | | | sight | number horz | 01
02 | | | leg | | | | | series leg | | | | | date | yrmody | 871208
871208 | Table 3. (continued) | species code: 26 | proportion mean coher. | deg min (% of school) heat | 100.00 | | |---|---|--|------------------|--| | | sition beauf. detected perp. latitude longitude | deg min | 00 16 s 106 32 w | | | IN
HOSEI) | latitude | <pre>vert. number by dist.(km) deg min</pre> | 00 16 s | | | species: FRASER'S DOLPHIN (LAGENODELPHIS HOSEI) | l perp. | dist.(km) | 2.2 | | | s: FRASE
(LAGE | detecte | рÀ | 89 | | | specie | beauf. | number | m | | | , | | | 12 | | | | Sun
 | 11017 | 90 | | | 4 | signe sun po | | 90 | | | کم | ۲
ک | | 90 | | | date series leg sight | | | 0.5 | | | date | Yrmody | | 1760/9 | | Table 3. (continued) | | 32 | l size est | low | 9.0
9.0
22.0
25.0
21.0 | |----------------------|--|------------------------------------|-------------------|--| | | species code: 32 | nean schoo | best | 11.0
12.0
29.0
28.0
25.0 | | | spec | proportion mean school size est | (% of school) | 100.0
100.0
100.0
100.0 | | | | longitude | deg min | 102 11 w
117 57 w
101 16 w
090 09 w
094 55 w
103 54 w | | pecies | ALE
TA) | latitude | deg min | 16 16 n
01 13 n
02 15 n
09 27 n
07 50 n
12 57 n | | Sightings by Species | species: PYGMY KILLER WHALE (FERESA ATTENUATA) | sun position beauf. detected perp. | dist.(km) deg min | 00.00 | | Sight | S: PYGMY
(FERE | detecte | by | 67
04
31
31
56 | | | species | beauf. | rt. number by | певерг | | | | osition | Ve | 01
02
02
01 | | | | | number horz. | 06
02
03
08
08 | | | | sight | numbe | 08
01
02
01
06
03 | | | | leg | | 02
03
03
05
01 | | | | series | | 08
01
02
01
08 | | | | date | yrmody | 870822
870916
870923
871017
871021 | Table 3. (continued) | | 33 | size est | low | 8.0
11.0
8.0 | |----------------------|---|------------------------------------|---------------------------|----------------------------------| | | species code: 33 | mean school | best | 8.0
11.0
13.0 | | | eds | proportion mean school size est | (% of school) best | 100.0
100.0
100.0 | | | | longitude | deg min | 091 09 w
097 57 w
111 19 w | | pecies | ALE
SIDENS) | latitude | deg min | 06 21 n
07 13 n
02 49 n | | Sightings by Species | species: FALSE KILLER WHALE
(PSEUDORCA CRASSIDENS) | l perp. | dist.(km) deg min | 0.3 | | Sight | : FALSE
(PSEUI | sight sun position beauf. detected | þу | 99
64
63 | | | species | beauf. | number horz. vert. number | 624 | | | | osition | vert. | 01
01 | | | | d uns | r horz. | 12
09 | | | | | numbe | 01
02
06 | | | | leg | | 05
04 | | | | date series | | 03
04 | | | | date | yrmody | 871016
871025
871120 | Table 3. (continued) | | | | 1 |---------------------------------|--------------|---------------|--------|----------------------|--------|--------|--------|--------|--------|-----------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 34 | size est | low | 7.0 | 0.0 | 14.0 | 0.6 | 8.0 | 0.9 | 13.0 | 15.0 | 0.00 | 20.0 | 22.0 | 14.0 | 39.0 | 10.0 | 10.0 | 17.0 | 15.0 | 16.0 | 7.0 | 21.0 | 8.0 | 0.6 | 10.0 | | species code: | mean school | best | 0.6 | * *
0.0 | 19.0 | 13.0 | *0.0 | 8.0 | 16.0 | 19.0 | 0.07 | 23.0 | 25.0 | 14.0 | 42.0 | 11.0 | 13.0 | 18.0 | 17.0 | 17.0 | 8.0 | 25.0 | 0.6 | 10.0 | 12.0 | | oeds | proportion n | (% of school) | 100.0 | 51.7
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.00T | 19.0
50.0 | 85.3 | 22.5 | 100.0 | 33.3 | 100.0 | 0.09 | 42.5 | 56.3 | 100.0 | 100.0 | 52.7 | 100.0 | 100.0 | 100.0 | | | longitude | deg min | 24 | 109 56 w
104 09 w | 22 | 41 | 32 | 17 | 77 | 7.5 | # c | 17 | 0.5 | 05 | 60 | 90 | 27 | 55 | 49 | 27 | 43 | 14 | 59 | 20 | 03 | | SP.) | latitude | deg min | 01 | 02 02 s
00 46 n | 48 | 12 | 90 | 41 | 44 | 200 |) o | 300 | 55 | 31 | 47 | 54 | 90 | 26 | 07 | 53 | 20 | 27 | 41 | 43 | 04 | | PILOT WHALE
(GLOBICEPHALA S) | d perp. | dist.(km) | 0.2 | 2.1 | 1.0 | 1.9 | 0.1 | 0.5 | 0.7 | 0.
7.0 | 4.0 | 0.1 | 0.5 | 0.8 | 2.7 | 0.1 | 9.0 | 1.1 | 2.9 | 1.0 | 0.0 | 0.0 | 4.0 | 2.2 | 0.2 | | | detected | kq | 22 | 8 8
9 | 21 | 29 | 51 | 05 | 02 | 200 | 000 | 62 | 69 | 31 | 56 | 31 | 26 | 63 | 56 | 31 | 66 | 63 | 31 | 69 | 63 | | species: | beauf. | number | ന് | w 4 | 4 | ٣ | m | m i | സ | 4 ربر | < | > 4 | 7 | ю | 7 | 2 | ю | 7 | m | ĸ | ო | 7 | 7 | က | 4 | | | sun position | vert. | 02 | 0 0 | 01 | 02 | | 02 | 07 | To | 2 C | 12 | 12 | 0.5 | 12 | 12 | 02 | | 02 | 01 | | | 01 | | | | | | horz. | 0.4 | 010 | 0.1 | 0.2 | | 01 | 010 | 7 0 | 7. | 03 | 12 | 03 | 03 | 12 | 0.7 | | 08 | 0.2 | | | 10 | | | | | sight | number | 02 | 01 | 02 | 60 | 13 | 05 | 0.5 | TT | 2 5 | 90 | 10 | 05 | 07 | 60 | 14 | 19 | 60 | 03 | 01 | 02 | 90 | 60 | 0.5 | | | leg | | 90 | 0.5 | 01 | 01 | | 02 | 01 | TO | # C | 0 0 | | 01 | 03 | 01 | 01 | | 01 | 03 | | | 0.7 | 01 | 0.7 | | | series | | 03 | 02 | 02 | 0.2 | | 04 | 90 |)
() | 2 0 | 03 | | 02 | 0.5 | 0.2 | 10 | | 11 | 04 | | | 0.5 | 60 | 80 | | | date | yrmody | 870810 | 8/0920
870922 | 870924 | 870925 | 870926 | 870926 | 870926 | 870929 | 870937 | 871001 | 871017 | 871017 | 871017 | 871017 | 871017 | 871018 | 871021 | 871030 | 871114 | 871115 | 871115 | 871115 | 871122 | Table 3. (continued) | | | | 1 | | |----------------------|--------------------------------------|---------------------------------|--------------------|--| | | 37 | size est | low | 0.4 % % % % % % % % % % % % % % % % % % % | | | species code: 37 | ean school | best | 0.4888
0.0000
0.000 | | | spec | proportion mean school size est | (% of school) best | 1000.0
1000.0
1000.0
1000.0 | | | | longitude | deg min | 087 48 w
091 27 w
103 54 w
099 32 w
111 49 w | | pecies | | latitude | deg min | 08 27 n
08 35 n
13 44 n
07 48 n
11 14 n | | Sightings by Species | species: KILLER WHALE (ORCINUS ORCA) | l perp. | dist.(km) deg min | 4.3
0.7
0.9
5.0
3.0 | | Sight | S KILLEF
(ORCIN | on beauf. detected | by | 31
31
55
31
31
63 | | | species | beauf. | vert. number | ₩₩ 4 ₩₩₩ | | | | sun position | ! | 01 02 | | | | d uns | horz. | 01
08
04 | | | | sight | number horz. | 07
08
03
04
10 | | | | leg | | 09
03
01
02 | | | | series | | 06
03
04
02 | | | | date | yrmody | 871014
871018
871110
871115
871115 | | | _ | _ | |---|--------|---| | | 7 | ₹ | | | à | ń | | | 0 | 2 | | | 7 | 3 | | | 2 | 4 | | | - | 7 | | • | ٠, | 4 | | | + | د | | | 2 | 7 | | | 2 | ₹ | | | C | J | | | 7 | ١ | | | . ` | - | | | | | | | ` | • | | | ~ | • | | | ~ | • | | | ۰
۳ | つ・ つ い | | | ٠. | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | | (| 4 | | | (| 4 | | | (| 4 | | | (| 4 | | | ٠. | 4 | | | 46 |] size est | low | 3.0. | 3.0 | 0.6 | 0.4 | 18.0 | 39.0 | 5.0 | 28.0 | 25.0 | 13.0 | 5.0 | 14.0 | 3.0 | 102.0 | 0.9 | 10.0 | 2.0 | |----------------------|---|--------------------|-------------------|---------|---------|--------|------------|------------------|--------|--------|--------|--------|--------|--------|----------|--------|----------|--------|---------|----------| | | species code: | mean school size | best | 3.0 | 3.0 | 11.0 | 0.0 | 20.02 | | 5.0 | 28.0 | 29.0 | 14.0 | 0.9 | 15.0 | 3.0 | 116.0 | 7.0 | 10.0 | 2.0 | | | eds | proportion | (% of school) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 30.0 | 100.0 | 100.0 | 50.0 | 0.09 | 100.0 | 100.0 | 100.0 | 12.2 | 100.0 | 100.0 | 100.0 | | | | longitude | deg min | 40 | | 90 | 0/9 22 w | , , , | 27 | | | | 43 | 47 | 101 27 w | 12 | 105 13 W | 20 | | 114 43 w | | pecies | SPERM WHALE
(PHYSETER MACROCEPHALUS) | latitude | deg min | 14 03 n | 07 43 n | 40 | 07 24 n | 200 | 31 | 35 | | 05 | 34 | | 29 | 22 | 16 16 n | 44 | 12 06 n | | | Sightings by Species | WHALE
TER MACRC | perp. | dist.(km) deg min | 0.6 | 6.4 | 0.4 | ٥.
۲. | 1.5 | 1.0 |
1.0 | 0.3 | 4.4 | 0.3 | 5.7 | 5.3 | 0.0 | 5.9 | 7.9 | 0.5 | 1.2 | | Sight | | on beauf. detected | ру | 68 | 05 | 02 | 67 | 0 T. | 69 | 64 | 55 | 64 | 64 | 64 | 31 | 69 | 64 | 69 | 31 | 63 | | | species: | n beauf. | . number | 4 | m | സ | .n w | J (r | 0 (7 | m | 2 | 7 | 7 | FFI | ო | m | ო | 7 | m | 2 | | | | sitio | vert. | 0.1 | 05 | 12 | 0.1 | 0.2 | 1 | | 02 | 01 | 03 | 02 | | 02 | 01 | | | 02 | | | | sun positi | horz. | 90 | 01 | 07 | 0.2 | 12 | ì | | 0.1 | 01 | 60 | 60 | | 03 | 12 | | | 0.7 | | | | sight | number | 0.5 | 90 | 01 | 0.5
7.5 | 0.5 | 010 | 04 | 21 | 1.6 | 02 | 04 | 90 | 02 | 02 | 02 | 04 | 01 | | | | leg | | 90 | 02 | 08 | 11 | 7 (| 01 | 01 | | 01 | 0.1 | 03 | 80 | 02 | 90 | 02 | 10 | 0.5 | | | | series | | | | | 7 0 | | | | | | | | | | 03 | | | | | | | date | yrmody | 870821 | 870926 | 870930 | 871001 | 871011 | 871014 | 871016 | 871018 | 871018 | 871028 | 871028 | 871029 | 871103 | 871109 | 871115 | 871125 | 871202 | Table 3. (continued) | | sst |]
] | | | | | | | | | |--|------------------------------------|--------------------|---------|---------|-------|---------|-------|---------|----------|---------| | 8
8 | size e | low | 2.0 | 1.0 | 2.0 | 4.0 | 1.0 | 2.0 | 2.0 | 1.0 | | species code: 48 | mean school size est | best | 2.0 | 2.0 | 2.0 | 0.9 | 2.0 | 2.0 | 2.0 | 1.0 | | peds | proportion m | (% of school) best | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | longitude | deg min | | | | | | | 098 41 W | | | LE | latitude | deg min | 07 45 n | 07 53 n | 0149s | 08 22 n | | 07 34 n | 11 15 n | 04 30 n | | SPERM WHA
SIMUS) | perp. | dist.(km) deg min | 0.2 | 8.0 | 9.0 | 4.1 | 0.7 | 0.3 | 0.5 | 0.4 | | species: DWARF SPERM WHALE (KOGIA SIMUS) | sun position beauf. detected perp. | ρλ | 0.5 | 04 | 04 | 05 | 68 | 51 | 31 | 22 | | species | beauf. | vert. number | | 7 | m | | Ŧ | - | ~ | 2 | | | sition | | 01 | 12 | 12 | 01 | 02 | 02 | 01 | 01 | | | od uns | horz. | 12 | 02 | 12 | 10 | 03 | 03 | 02 | 10 | | | sight | number | 07 | 05 | 02 | 10 | 21 | 22 | 0.4 | 01 | | | leg | | | 01 | 14 | 04 | 01 | 01 | 01 | 21 | | | series | | | 90 | 01 | 05 | 11 | 11 | 03 | 01 | | | date | rmody | 70816 | 70816 | 70920 | 70927 | 70927 | 70927 | 71027 | 71121 | | ರ | |---------------| | .0 | | O) | | ∺ | | | | nne | | | | -1.1 | | Ţ | | con. | | = | | \circ | | 7) | | ~ | | | | \sim | | $\overline{}$ | | $\overline{}$ | | • | | 3. | | 3. | | 3. | | | | ø | | le | | le | | le | | ø | | | 49 | size est | low | 1.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 1.0 | 2.0 | 1.0 | 1.0 | 2.0 | 1.0 | 1.0 | 3.0 | |----------------------|---------------------------|----------------------|-------------------|----------|----------|---------|---------|--------|--------|--------|--------|--------|---------|---------|----------|----------|----------| | | species code: | mean school size est | best | 1.0 | 2.0 | 1.0 | 2.0 | 2.0 | 3.0 | 1.0 | 2.0 | 1.0 | 1.0 | 2.0 | 1.0 | 1.0 | 3.0 | | | spec | proportion m | (% of school) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | longitude | deg min | 113 37 W | 101 48 w | | | | 12 | 12 | 23 | | | | 114 29 W | 112 32 W | 109 18 w | | pecies | | latitude | deg min | 07 42 n | 16 06 n | 15 46 n | 14 25 n | 33 | | | 20 | 22 | 13 50 n | 13 11 n | 14 39 n | 12 43 n | 15 19 n | | Sightings by Species | BEAKED WHALE
(ZIPHIID) | l perp. | dist.(km) deg min | 0.5 | 9.0 | 0.3 | 0.0 | 0.5 | 5.0 | 0.0 | 0.1 | 1.0 | 0.7 | 1.7 | 1.4 | 3.4 | 2.3 | | Sight | | lon beauf. detected | by | 29 | 04 | 04 | 04 | 89 | 04 | 04 | 29 | 64 | 69 | 31 | 63 | 31 | 26 | | | species: | beauf. | vert. number | H | · | e | 2 | ٣ | 7 | 7 | n | e | 4 | 3 | 4 | 3 | 1 | | | | sun position | !
! | | | 01 | 03 | 02 | 02 | 03 | 01 | | 02 | 02 | | 02 | 0.1 | | | | | number horz. | | | 12 | Η | 01 | 03 | 03 | 02 | | 03 | 01 | | 01 | 0.5 | | | | sight | numbe | 10 | 12 | 02 | 03 | 04 | 16 | 17 | 04 | 0.7 | 02 | 03 | 04 | 03 | 05 | | | | leg | | | | 02 | | | 0.5 | 0.5 | 10 | 01 | 90 | 0.2 | 04 | 01 | 02 | | | | series | | | | 02 | | | 10 | 10 | 02 | 04 | 02 | 03 | 0.5 | 0.5 | 90 | | | | date | Yrmody | 870816 | 870822 | 870823 | 870907 | 870926 | 870927 | 870927 | 871001 | 871029 | 871110 | 871111 | 871128 | 871129 | 871130 | Table 3. (continued) | | | Ze est | low | 1.0 | |----------------------|---|---|----------------------------------|------------------| | | species code: 50 | an school si | | 1.0 | | | speci | proportion mean school size est | deg min (% of school) best | 100.0 | | | F3 | sun position beauf. detected perp. latitude longitude | deg min | 14 41 n 101 36 w | | pecies | species: SOUTHERN BOTTLENOSED WHALE (HYPEROODON PLANIFRONS) | latitude | deg min | 14 41 n | | Sightings by Species | SOUTHERN BOTTLENOSED WH
HYPEROODON PLANIFRONS) | perp. | ert. number by dist.(km) deg min | 0.0 | | Sight | SOUTHE (HYPER | detected | $^{\mathrm{by}}$ | 04 | | | species | beauf. | number | H | | | | position | > | | | | | ıt sun | number horz. | 0 | | | | g sight | num | 60 | | | | series leg | | | | | | seri | Y | & | | | | date | yrmody | 870908 | Table 3. (continued) | | | | | I | |----------------------|---------------------------------------|------------------------------|-------------------|---| | | 51 | size est | low | | | | species code: | mean school size | best | | | | spec | proportion m | (% of school) | 0.000.0 | | | | longitude | deg min | 101 52 w
114 02 w
094 45 w
088 31 w
088 33 w
079 47 w
081 35 w
081 35 w
081 30 w
099 10 w
100 03 w
101 07 w
105 09 54 w | | pecies | I.N. | latitude | deg min | 14 46 0 00 3 44 0 00 00 3 44 0 00 00 3 44 0 00 00 3 44 0 00 00 00 00 00 00 00 00 00 00 00 0 | | Sightings by Species |
UNID, MESOPLODONŢ
(MESOPLODON SP.) | perp. | dist.(km) deg min | 8.100011101401000000
8.10000110140100000000 | | Sight | | sun position beauf. detected | by | 005
005
007
003
003
003
003
005
005
005
005
005
005 | | | species: | beauf. | rt. number | Q4%H0Q%%QQHHH%Q44 | | | | sition | vert | 01
01
01
01
01
01
01
01
01
01 | | | | od uns | horz. | 12
12
10
10
10
10
11
11
11
11 | | | | sight | number | 00000000000000000000000000000000000000 | | | | leg | | 001
001
001
001
002
003
003
003 | | | | series | : | 044
000
000
000
000
000
000
000
000
000 | | | | date | Yrmody | 870908
870925
870925
870927
870927
871010
871011
871011
871027
871027
871028
871028
871028
871028
871028 | Table 3. (continued) | | | | | 1 | | | | | | | | |----------------------|--|----------------------|--------------------|---------|----------|--------|--------|--------|--------|--------|----------| | | 61 | size est | low | 0 1 | 0. | 2.0 | 3 | 0.1 | 0 0 | 0.0 | 1.0 | | | species code: 61 | mean school size est | best | 1.0 | 1.0 | 2.0 | 3.0 | 1.0 | 0.0 | 100 | 1.0 | | | speci | proportion me | (% of school) best | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | longitude | deg min | 1 | 110 35 W | | | 04 | | | 101 18 w | | pecies | WHALE
STRÍS) | latitude | deg min | 14 01 n | 02 10 n | | | | | | 06 04 n | | Sightings by Species | species: CUVIER'S BEAKED WHALE (ZIPHIUS CAVIROSTRIS) | l perp. | dist.(km) deg min | 0.0 | 0.3 | 0.4 | 0.0 | 2.0 | 2.7 | 1.1 | 0.5 | | Sight | s: CUVIEF | on beauf. detected | þу | 05 | 51 | 51 | 22 | 05 | 31 | 31 | 26 | | | species | beauf. | number | 4 | 4 | 7 | 7 | -1 | 2 | 4 | n | | | | sition | vert. | | 12 | 02 | 02 | | 01 | 0.1 | | | | | sun positi | horz. | | 90 | 0.2 | 03 | | 01 | 0.7 | | | | | sight | number horz. | 0.5 | 05 | 60 | 15 | 25 | 15 | 07 | 0.5 | | | | leg | | 04 | 60 | 0.2 | 04 | 0.5 | 01 | 03 | 0.5 | | | | series | | 0.5 | 0.5 | 90 | 10 | 13 | 60 | 90 | 03 | | | | date | yrmody | 870826 | 870918 | 870921 | 870927 | 870927 | 871018 | 871022 | 871029 | Table 3. (continued) | 7.0 | size est | low | 3.0 | 1.0 | 1.0 | 0.1 | 1.0 | 2.0 | 1.0 | 2.0 | |--------------------------|---------------|---------------|-------|----------|------------------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|----------|-------------|----------|-------|----------|----------|---------------|----------| | species code: | mean school | best | 3.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | *0.0 | 1.0 | 1.0 | 1.0 | 1:0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2.0 | 1.0 | 2.0 | | speci | proportion me | (% of school) | 100.0 | | | ø | _ | 3 | 3 | × : | 2 3 | 3 | 3 | ≯ | × | 3 | × | 3 | 3 | × | 3 | 3 | 3 | 3 | 3 | 3 | 3 | × | 3 | 3 | 3 | 3 | × | × | | | tud | min | 14 | 25 | 52 | 70 | 10 | 20 | 13 | 41 | 41 | 48 | 04 | 34 | 32 | 05 | 33 | 02 | 40 | 14 | 21 | 44 | 27 | 18 | 32 | 23 | 54 | 07 | 90 | | | longitude | deg | 117 | 113 | 109 | 093 | 110 | 101 | 101 | 088 | 078 | 078 | 081 | 085 | 084 | 087 | 091 | 960 | 860 | 100 | 101 | 107 | 111 | 114 | 111 | 111 | 117 | 115 | 112 | | | | _ | g | ¤ | d t | ; ⊆ | d | ¤ | g | ¤ | ជ | ч | п | ¤ | ¤ | u | ď | u | u | ¤ | u | ď | ¤ | ď | ¤ | ¤ | u | ď | ¤ | | | tud. | min | 15 | 03 | 12 | 00 | 05 | 10 | 18 | 38 | 90 | 36 | 26 | 48 | 29 | 46 | 30 | 53 | 41 | 25 | 07 | 37 | 48 | 31 | 27 | 40 | 44 | 21 | 59 | | · | latitude | deg | 32 | 21 | 14 | 4 - | 00 | 02 | 02 | 08 | 08 | 07 | 03 | 04 | 03 | 0.5 | 08 | 03 | 10 | 90 | 13 | 01 | 02 | 14 | 13 | 16 | 18 | 18 | T
8 | | SP. | ERA | perp | dist.(km) | | • | 4.0 | | | | • | • | • | • | | • | | | | | | • | | | • | | • | • | | | u, | | OPT | Ω., | list | 0 | 4 | 00 | ۳- د | N | ~ | 0 | - | ന | C | 0 | 0 | 10 | ~ | 2 | 0 | ~ | 0 | 7 | ~ | C | 0 | S | m | 0 | ₽ ' (| 9 | | JUAI
AEN | ed | · 10 | RORQUAL
(BALAENOPTERA | detected | рУ | 05 | 04 | 5
2
3
8 | 0 0 | 04 | 99 | 04 | 21 | 22 | 52 | 63 | 31 | 26 | 69 | 31 | 64 | ë | 25 | 64 | 31 | 26 | 31 | 22 | 31 | 69 | 3. | 31 | species: | beauf. | number | $^{\mathrm{sb}}$ | | unu | 2 | 7 | რ 4 | 4 | 4 | n | က | 7 | ~ | ~ | ന | n | CC. | ~ | ო | Ŋ | ന | N | m | Ŋ | ₽' | 4 | C) | c | m | 4 | , T | | | position | irt. | 2 | <u>ლ</u> | 2 = | 4 | | | | ~ | | | ∾ | | | ~ | ᆫ | ~ | ~ | | o. | 근 | | 근 | | _ | <u>س</u> | . | 2 | | | osit | Ve | | _ | 00 | , | - | ٥ | | 0 | | | 0 | 0 | | 0 | 0 | O | Ç | | Ç | 0 | 0 | 0 | | 0 | 0 | 0 | - | | | d uns | horz. | 12 | 4 | 04 | 1 | 12 | - -! | | 10 | | | 07 | 6(| | 6 | 60 | 33 | <u>ب</u> | | ~; | <u>∞</u> | 60 | <u>~</u> | | <u>م</u> | ū | ∾ (| 2 | | | | | | ٠, | <u> </u> | , | П | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | | - | 0 | 0 | 0 | | 0 | 0 | 0 | - | | | sight | number | 04 | 16 | 03 | 07 | 03 | 01 | 03 | 02 | 80 | 14 | 01 | 60 | 01 | 90 | 60 | 01 | 01 | 22 | 02 | 04 | 08 | 90 | 90 | 04 | 02 | 04 | 03 | | | | ā | leg | | 04 | | | 01 | 04 | 01 | 0 | 04 | 0 | 01 | 03 | | 08 | | 01 | 12 | 90 | | 04 | 60 | 01 | | 0. | 02 | 0.7 | 05 | 0.4 | | | les | | _ | | | _ | | ~1 | ~ | _ | | • | 1 | | | | | | | | ~- | | | | | | | | _ | | | series | | 01 | | | 0. | 04 | 0.5 | 0 | 0 | ŏ | 0 | 01 | | 01 | | 0.5 | 01 | 01 | | 02 | 0 | 90 | | 90 | 0 | 90 | 03 | ဂိ | | | a) | rmody | 308 | 311 | 370813 | 326 | 916 | 923 | 923 | 327 | 600 | 600 | 111 | 112 | 112 | 113 | 118 | 020 | 27 | 28 | 11 | 119 | 20 | 28 | 53 | 01 | 03 | 400 | 300 | | | date | Yrmc | 3708 | 3708 | 3/02 | 3708 | 3705 | 3705 | 3700 | 370 | 371(| 371(| 371(| 371(| 371(| 371(| 3710 | 371(| 371(| 3710 | 3711 | 3711 | 3711 | 3711 | 3711 | 3712 | 3712 | 717 | 2 / T z | Table 3. (continued) | | | | | ı | |----------------------|-----------------------------------|------------------------------------|--------------------|----------------------------------| | | 7.2 | size est | low | 2.0
2.0
2.0 | | | species code: 72 | mean school size est | best | 2.0
2.0
3.0 | | | sbec | proportion me | (% of school) best | 100.0
100.0
100.0 | | | | latitude longitude | deg min | 111 32 w
100 37 w
101 56 w | | pecies | | latitude | deg min | 17 47 n
02 35 n
13 07 n | | Sightings by Species | S WHALE
ENI) | sun position beauf. detected perp. | dist.(km) deg min | 1.4
0.8
2.3 | | Sight | species: BRYDE'S WHALE (B. EDENI) | detected | rt. number by | 22
51
56 | | | species | beauf. | number | 2 4 3 | | | | osition | vert. | 02
12
03 | | | | | umber horz. ver | 04
06
12 | | | | sight | number | 13
05
01 | | | | leg | | 11
01
02 | | | | series | | 07
06
01 | | | | date | yrmody | 870812
870923
871111 | Table 3. (continued) | | 75 | l size est | low | 0.0000 | |----------------------|-----------------------------------|---------------------------------|--------------------|--| | | species code: 75 | ean schoo | best | 11.000.1 | | | speci | proportion mean school size est | (% of school) best | 100.0
100.0
100.0
100.0 | | | | longitude | deg min | 116 11 w
091 18 w
096 00 w
112 20 w
112 06 w | | pectes | | latitude | deg min | 26 32 n
08 51 n
09 57 n
18 56 n
19 24 n | | signituds by species | HALE
SCULUS) | detected perp. | dist.(km) deg min | 0.8
1.8
2.1 | | right | species: BLUE WHALE (B. MUSCULUS) | detected | ф | 51
64
64
35 | | | species | beauf. | number | 00004 | | | | sition | ver | 03 | | | | sun positic | number horz. | 01
08 | | | ÷ | sight | number | 01
03
02
06 | | | | leg | | 06
02
07
05
03 | | | | series | | 01
02
02
03
08 | | | | late | wody. | 0810
1018
1024
1205
1205 | Table 3. (continued) | | 92 | size est | low | 1.0 | |----------------------|---|---|--------------------|------------------| | | species code: 76 | ean school | best | 1.0 | | | spec | proportion mean school size est | (% of school) best | 100.0 | | | | date series leg sight sun position beauf. detected perp. latitude longitude | deg min | 13 43 n 090 53 w | | pecies | EANGLIAE) | latitude | deg min | 13 43 n | | Sightings by Species | species: HUMPBACK WHALE
(MEGAPTERA NOVAEANGLIAE) | perp. | dist.(km) deg min | 4.5 | | Sight | :: HUMPBA
(MEGAP | detected | number by | 04 | | | species | beauf. | | 72 | | | | position | number horz. vert. | | | | | ght sun | uber hor | 02 | | | | leg si | ınu | | | | | series | | | | | | date | yrmody | 870905 | | ਾਹ | |---------------| | ě | | ~~ | | | | ᅜ | | | | Ĺ | | | | ⊏ | | 0 | | ဝ္ပ | | _ | | $\overline{}$ | | | | | | | | | | 3. | | | | | | e 3. | | φ | | le | | le | | le | | able | | le. | | | e est | × | | o (| | 00 | 0 | 0 | 0 |) C | 0 | 0 | 0 | 0 (| 0 | . . | 0 | 0 | 0 (| > | *0 | . 0 | 0 | 0 | 0 (| . | 0 | 0 (| 5 C | 00 | 0 | 0 | 5 | 0 | 0 | | 0 | |----------------------|-------------|---------------|-------|-------|----------------|----------|-------
-------|--------|-------------|-------|-------|-------|-------|-------|------------------|------|-------|-------|-------------|----------------|------|-------|-------|-------|------------|----------------|-------|----------------------------|------------|-------|-------|----------|--------------|-------|-------|--------| | 77 | siz | low | | | | | Ξ. | ٠ | ر
ا | n ~ | | 0 | 0 | ო 1 | | • | | | . , | | | | 7 | | • | | H | | • | | | ά, | • |
M | • | | | | species code: | mean school | best | *0.0 | - | 20.02 | 17.0 | *0.0 | *0.0 | *0.0 | , o c | *0.0 | *0.0 | *0.0 | 4.0 | 50.0 | · · · · | 7.0 | 15.0 | *0.0 | 25.0 | Դ . | 42.0 | 3 | *0.0 | *0.0 | * * 0.0 | *0.0 | 15.0 | * * | *0.0 | 24.0 | *0.0 | \sim | 4.0 | 0.6 | 0.1 | *0.0 | | spe | proportion | (% of school) | 00. | | | . 06 | 000 | 00 | | | | 00 | 00. | 00. | 00. | | | 00. | 20. | | ; c | | 00. | 00 | 000 | | 00 | i, | | -i c | 10. | 0 | ٠.
د | 00 | ٠ | | 00. | | | longitude | deg min | 17 15 | 14 16 | 14
12
10 | 13 0 | 13 43 | 13 42 | 13 42 | 12 59 | 13.25 | 13 28 | 12 23 | 12 07 | 12 02 | 01 01 | 12 5 | 12 58 | 16 25 | 00 07 | 05 05 | 02 5 | 02 51 | 02 45 | 97 05 | 96 11 | 93 27 | 92 53 | 91 47 | 91 45 | 93 51 | 94 04 | 95 47 | 101 04 W | 01 04 | 16.52 | 16 5 | | LPHIN | latitude | deg min | 2 12 | 2 54 | 7 0 | 2 T 0 | 1 45 | 1 43 | 1 40 | 7 7 T | 1,0 | 1 09 | 9 17 | 9 01 | 8 23 | 4
5
7
7 | 57 | 7 53 | 0 01 | 7 C | 3 6 | 000 | 6 11 | 6 19 | 200 | 0 OF | 4 04 | 4 00 | 2 02 | 3 0 0 | 3 54 | 3 56 | 0.5 | 14 37 n | 4 37 | 2.00 | 1 25 | | UNIDENTIFIED DOLPHIN | perp. | dist.(km) | | | • | | | • | • | • | | | • | • | | • | | • | • | | | | | • | • | | | • | ٠ | | | | ٠ | 0.7 | | | | | | detected | рУ | 04 | 0.0 | 0 H | 22 | 0 4 | 51 | 89 | 200 | 5 [5 | 04 | 04 | 89 | 05 | 200 | 0 0 | 68 | 51 | TC | 0 60 | 51 | 0.5 | 05 | 0.4 |) IC | 89 | 0.5 | 27 | 0.0 | 89 | 89 | 51
7 | 88 | 896 | 7 7 7 | 04 | | species: | beauf. | number | 2 | ~ ~ | 7 0 | n m | , m | 7 | m (| v) (r | n < | 2 | ~ | m : | ლ • | 4 r | ۱۱ | ٦ | Ժ ւ | Ω (| ი ო |) M | m | m | ~ ~ | 7 - | m | 4 | m r | o 0 | 4 | 4 | ~ | n 01 | 21 | O 10 | 4 | | | osition | vert. | 03 | 000 | 7 6 | 17
13 | 12 | 01 | 01 | TO | 0 0 | 0.2 | 03 | 0.5 | 01 | 7 7 | 12 | 12 | 0.2 | ć | 0 0 | 02 | 01 | 01 | 03 | 12 | $\frac{1}{12}$ | | | 02 | 3 | ; | 03 | 5 | | 01 | !
• | | | od uns | horz. | 02 | 00 | 9 6 | 02 | 03 | 03 | 03 | ر
د د | 04 | 04 | 10 | 10 | 10 | 10 | 90 | 02 | 11 | , | 010 | 01 | 0.2 | 05 | Η; | Ŧ1
0 | 12 | | | 0.7 | | , | 2 - | - | | 90 |)
) | | | sight | number | 0.5 | 05 | С
С П | 90 | 0.7 | 08 | 60 | 1
1
1 | 12 | 13 | 01 | 90 | 800 | 200 | 03 | 04 | 03 | 2 5 | 3 8 | 01 | 02 | 04 | 04 | 13. | 03 | 80 | E 6 | 0 0
0 0 | 01 | 04 | 90 | 01 | 05 | 03 | 04 | | | leg | | 01 | 5 | T 0 | 000 | 02 | 03 | 000 | 7 0 | 0.5 | 01 | | 01 | 00 | 000 | 03 | 01 | 00 | 7 6 | | 0.7 | 0.1 | 03 | 01 | 01 | 04 | 03 | 0 0 | 010 | 01 | 01 | 010 | 020 | 000 | 20 | 31 | | | series | | 0.2 | ć | 2 0 | 800 | 60 | 60 | 10 | 17 | 13 | 14 | | 04 | 02 | ر
د
د | 04 | 0.5 | 90, | T 0 | - 7 | 01 | 02 | 03 | 03 | 13 | 0.5 | 80 | £00 | 0.5 | 01 | 04 | 800 | 01 | 01 | Ť | 0.2 | | | date | yrmody | 708 | 200 | 2 6 | 302 | 307 | 708 | 708 | 200 | 202 | 307 | 708 | 708 | 30/ | 307 | 708 | 302 | 708 | 207 | 302 | 307 | 302 | 708 | 90/ | 90.
708 | 302 | 708 | 20
20
20
20
20 | 802 | 209 | 209 | 200 | 870908 | 907 | 000 | 709 | Table 3. (continued) | 77 | l size est | low | 13.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 | |----------------------|--------------|---------------|--| | ies code: | mean school | best |
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000 | | species | proportion m | (% of school) | | | | longitude | deg min | 1114 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | NIHdi | latitude | deg min | 01 38 n 0 0 27 s 0 0 0 32 n 0 0 0 32 n 0 0 0 2 0 2 s 2 n 0 0 0 2 2 s 2 n 0 0 0 2 35 n 0 0 0 2 55 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | UNIDENTIFIED DOLPHIN | l perp. | dist.(km) | 001100000448001100008004100000000000000 | | •• | detected | þу | 123
123
123
123
123
123
123
123 | | species | beauf. | number | 4400040000011144410000000010110110001100011000 | | | position | vert. | 022 001 001 002 001 001 001 001 001 001 | | | d uns | horz. | 000 01 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | sight | number | 044
002
003
003
004
005
007
007
007
007
008
009
009
009
009
009
009
009
009
009 | | | leg | | 0 001000000000000000000000000000000000 | | | series | | 0 000000000000000000000000000000000000 | | | ate | mody | 0.0917
0.0917
0.09217
0.09233
0.09233
0.09233
0.09233
0.09233
0.09233
0.09233
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923
0.0923 | Table 3. (continued) | 7.7 | l size est | 12.0
12.0
12.0
12.0
12.0
12.0
13.0
13.0
14.0
15.0
16.0
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17 | |-------------------------------|----------------------|--| | ies code: | mean school
best |
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00
230.00 | | species | proportion m
 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | longitude
deg min | 099 43 8 4 1110 33 8 4 1110 559 8 8 8 8 1110 550 8 8 8 1110 550 8 8 8 1110 550 8 8 8 1110 550 8 8 8 1110 550 8 8 8 1110 550 8 8 1100 | | LPHIN | latitude
deg min | 000
000
000
000
000
000
000
000 | | TIFIED DO | perp. | 01122000000000000000000000000000000000 | | species: UNIDENTIFIED DOLPHIN | detected | 004
000
000
000
000
000
000
000
000
000 | | specie | on beauf. | QUQUUU400004404000000000000000000000000 | | | positio
. vert | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | sun
 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | sight
number | 000000000000000000000000000000000000000 | | | leg | 000000000000000000000000000000000000000 | | | series | 001
001
002
003
001
001
001
001
001
001
001
001
001 | | | date | 871028
871028
871028
871028
871028
871028
871028
871028
871102
871111
871111
8711120
8711120
8711120
8711120
8711120
8711120
8711120
8711120
8711120
8711120
8711120
871120 | Table 3. (continued) | 78 | l size est | low | 44284842444444444444848424444444444444 | |--------------------------|-------------|---------------|--| | species code: | mean school | best | HUM44848044044444444444444444444444444444 | | spec | proportion | (% of school) |
0.000.0 | | | longitude | deg min | 1117 0 13 w 1112 0 13 w 1112 0 13 w 1112 0 14 w 1 w 1112 0 15 w w 1112 0 15 w 1 w 112 0 15 w 1 w 100 0 10 110 0 10 0 0 0 | | ALL WHALE | latitude | deg min | 32 18 18 18 21 18 18 21 18 18 21 18 18 21 18 18 21 21 21 21 21 21 21 21 21 21 21 21 21 | | UNIDENTIFIED SMALL WHALE | perp. | dist.(km) | 000044000011000000010000104040000000000 | | | detected | by | 00000000000000000000000000000000000000 | | species: | beauf. | . number | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | position | vert. | 000000000000000000000000000000000000000 | | | od uns | horz. | 00000000000000000000000000000000000000 | | | sight | number | 00100000010000000000000000000000000000 | | | leg | | 4181888 88441818 48118 181188 81 | | | series | | 000000 0000000 000000 000000 000000 0000 | | | date | rmody | 770880
77088152
770881652
770881652
770881652
770881652
77081662
770817
771017
771017
771017
771017
771017
771017
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117
771117 | Table 3. (continued) | | | ı | | |-----------------------------------|------------------------------|-------------------|--| | 67 | size est | low | 11.00.0 | | species code: 79 | mean school size | best | 0.000 | | pods | proportion m | (% of school) | 100.0
100.0
100.0
100.0 | | | longitude | deg min | 117 17 w
112 18 w
103 31 w
107 03 w | | GE WHALE | latitude | deg min | 28 37 n
19 15 n
01 09 n
01 30 n | | species: UNIDENTIFIED LARGE WHALE | perp. | dist.(km) deg min | 4.2
0.8
7.9 | | : UNIDEN | sun position beauf. detected | þУ | 51
05
67
31 | | species | beauf. | rt. number by | . W CZ 4-4 | | | sition | vert. | 02
03
01 | | | sun posit | umber horz. ve | 04
01
06 | | | sight | number | 02
03
04
03 | | | | | 16 | | | series leg | | 05 | | | date | yrmody | 870809
870812
870922
871119 | Table 3. (continued) | | | ı | 1 | |---|---|---------------------------|--| | 06 | size est | low | 12.0
22.0
1.0
9.0 | | species code: 90 | mean school size est | best | 0.0*
27.0
1.0
9.0 | | pads | proportion m | (% of school) best | 100.0
100.0
100.0
100.0 | | | longitude | deg min | 102 21 w
096 27 w
091 06 w
078 43 w | | UATA) | sun position beauf. detected perp. latitude | deg min | 16 17 n
14 51 n
13 45 n
08 26 n | | species: SPOTTED DOLPHIN (STENELLA ATTENUATA) | perp. | dist.(km) deg min | 7.9
1.3
0.2
0.0 | | SPOTTE (STENE | detected | þу | 05
22
68
31 | | species | beauf. | number horz, vert. number | 2222 | | | sition | vert. | 12 | | | d uns | horz. | 06
12 | | | sight | number | 06
11
03
07 | | | leg | | 01
01
02
05 | | | series | | 07
10
01
04 | | | date | yrmody | 870822
870825
870905
871009 | Table 3. (contineud) | | | | ı | | | | | | | | |--------------------------------|------------------------------------|--------------------|--------|--------|--------|--------|----------|--------|--------|--------| | 91 | size est | low | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 1.0 | 1.0 | 2.0 | | species code: 96 | mean school size | best | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 1.0 | 1.0 | *0.0 | | spec | proportion m | (% of school) best | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | longitude | deg min | 1 | | | | 085 23 w | | | | | TACEAN | latitude | deg min | j | | | | 04 41 n | | | | | species: UNIDENTIFIED CETACEAN | sun position beauf. detected perp. | dist.(km) deg min | 0.1 | 0.3 | 9.0 | 1.9 | 0.1 | 0.0 | 0.4 | 0.7 | | : UNIDEN | detected | þу | 0.5 | 15 | 51 | 64 | 26 | 69 | 63 | 52 | | species | beauf. | vert. number | - | m | က | -1 | m | ~ | 3 | 4 | | | osition | | | 01 | 03 | | 02 | 02 | | 02 | | | | number horz. | | 02 | 디 | | H | 60 | | 10 | | | sight | number | 02 | 03 | 01 | 11 | 05 | 04 | 03 | 90 | | | leg | | 02 | | 03 | 90 | 03 | 01 | 03 | 01 | | | series | | 03 | | 01 | 07 | 05 | 03 | 03 | 08 | | | date | yrmody | 870819 | 870823 | 870823 | 871009 | 871012 | 871013 | 871029 | 871201 | Table 3. (continued) | Species | |--------------| | V_{Δ} | | ings | | Sight | | | ا ئا | | | |-----------------------------|-----------------------------|-------------------|--| | 86 | size est | Low | 00000000000 | | species code: | ean school | best | * 0000000000 | | spec | proportion mean school size | (% of school) | 1000.0
1000.0
1000.0
1000.0
1000.0
1000.0 | | | longitude | deg min | 114 00 w
1113 40 w
107 19 w
105 29 w
079 25 w
079 24 w
079 27 w
091 20 w
110 35 w
1119 33 w | | ALE | latitude | deg min | 10 41 n
10 48 n
11 26 n
13 09 n
07 19 n
05 27 n
08 45 n
15 59 n
11 47 n | | species: UNIDENTIFIED WHALE | l perp. | dist.(km) deg min | 128880112121
8778777482889 | | : UNIDER | ion beauf. detected | by | 51
51
51
51
51
64
63
63 | | species | beauf. | number | 4 N N N N N N N N N N N N N N N N N N N | | | sition | vert. | 12
03
01
02
02
03 | | | sun positi | horz. | 12
02
03
03
03 | | | sight | number horz. | 00000000000000000000000000000000000000 | | | leg | |
01
00
00
00
00
00
00
00
00
00
00
00 | | | series | | 000
000
000
000
000
000
000
000 | | | date | yrmody | 870818
870818
870820
870821
871001
871010
871018
871120
871120 | *Denotes that no estimate was made. Marine mammal school size estimates for each observer, classified by species codes, for all sightings encountered in the eastern tropical Pacific during August 8 through December 10, 1987. Table 4. | | | | sqo | 4 | sqo | 5 | obs 12 | | obs 22 | | obs 5 | 1 | 9 sqo | 7 | ops (| 68 | obs 7 | 0, | |---------|----------------------|--------------|--------------|---|--------------|-----------|------------|---|----------------|----------|------------|----------------|--------------|------------|--------------|-----------|--------------|-----| | | date | sight
no. | best
est. | pot | best
est. | pct | best pest. | pct best | 11 · | ct b | est
st. | pet | best
est. | pat | best
est. | pct | best
est. | pat | | species | • | | | # C 1 1 1 1 1 1 1 1 1 | | | | *************************************** | | | | | | | | | | | | | 87081
87081 | 04 | 350
10 | | 325
26 | 100 | | - | 5 1 | 75 | 130 | 75 | 235 | 30 | 85
16 | 40 | | | | | 7081
7081
7081 | 03 | 250 | 100
75 | 85
450 | 100
75 | | | - | 00
98 | m | 0 | 51
155 | 0 20 | | 100 | | | | | 7081 | 007 | ÄΗ̈́ | | x | 08 | | | | | 12 | 100 | Ω | 90 | 29 | 100 | | | | | 7081
7082 | 07
01 | 5 | ĸ | 300 | 98 | | | | | | | 250 | 06 | | | | | | | 7082 | 03 | 250 | 100 | | | | | | | 120 | 100
20 | | | 260
75 | 100
15 | | | | | 70827082 | 04 | 09 | | 09 | 30 | | -,- | 15 10 | 70
00 | | | 29 | 40 | | | | | | | 7082 | 90 | 40 | 100 | | | | • | i |) | 18 | 100 | | | 34 | 100 | | | | | 7082 | 003 | 4 6 | | | 100 | | , , , - | | 00 | | | 41 | 100 | 22 | 100 | | | | | 7082 | 10
01 | ~ 10 | o o | 15 | 100 | | | - 66 | 000 | 18 | 100
60 | 10
67 | 100 | 111 | 100 | | | | | 7082 | 000 | 00 | | | 200 | | | , | 986 | α | · C | 85. | 10 C | 45 | 40 | | | | | 7082 | 07 | 225 | | | 100 | | , v. I | 4. | 00 |)
m | 100 | 100 | 100 | 73 | 100 | | | | | 7082 | 3 7 8
0 0 | 300 | 200 | ~ | 02 | | | | | 170 | 55
55
55 | C77 | 2 | 15 | 30 | | | | | 7082 | 90 | 300 | | 250 | 90 | | ~ , | សេរ | 39 | 99 | 70 | 120 | 70 | 9 | | | | | | 7082
7082 | 08
10 | 5 | | 4 | 82
CB | | 24 | വഗ | 57 | 350 | 37 | | 08 | 130 | 49 | | | | | 7082
7082 | 12
14 | 400
250 | 45 | | | | ~ 01 | 85
98 | 25
60 | 225 | | 375
110 | 40
30 | 115 | | | | | | 0607 | 03
05 | 73 | | | | | ,- | 75 9 | 06 | 12 | 100 | 70 | 80 | 28 | 1.00 | | | | | 0607 | 02 | \sim | | 90 | 75
95 | | | 4 |)3 | 20 | 86 | 85 | 45
90 | 65
38 | 23
93 | | | | | 0607 | 04 | | 0 | | | | | 9 7 | 00 | c | Ç | 22 | 0 | 44 | 100 | | | | | 060 | 080 | 70 | | | 0 | | ~ t*) | | 00 | 9 | 100 | 40 | 100 | 46 | 100 | | | | | 7090
7090 | 111 | 40 | ထင် | | | | | | 38
)0 | വവ | 60
100 | 65
27 | 75
100 | 64
23 | 70
100 | | | | | 0607 | 14 | 150 | Ōά | | 80 | | • | 8 1 | 00 | യഗ | 0 9 | | | 145 | 100 | | | | | 870908
870908 | 116 | 30 | 100 | 442 | 100 | | | 21 10
18 10 | 00 | 181 | 100 | 30 | 100
100 | 52 | 100 | | | | | 060 | 02 | 175 | 96 | 210 | 16 | | ω, | 85 | 91 | 65 | 94 | 80 | 93 | η (| 00 | | | | | 060, | 03 | $^{\circ}$ | 100 | $^{\circ}$ | 100 | | H | 0 | 00 | | | | 100 | 185 | 100 | | | Table 4. (continued) Table 4. (continued) | | | | 940 | 4 | 840 | ъ | 1 | | 2 | S | 040 | 12 | odo | 23 | 9 540 | α | o do | 20 | |---|----------------------------|----------------|-----------------|-----------------|-----------------------|--------------------|--------------|-----|---------------------|-------------------|-----------------|----------------------|-----------------|-------------------|-----------------|-------------------|--------------|-----| | | | | 600 | ۲ | 2
 CD
 CD | , | | | | 7 | - 1 |
 | | | - 1 | | i | > | | | date | sight
no. | best
est. | pct | so i vods | 10 | | | | | | | | | | | | | | | | | | | S T T T T T T T T T T T T T T T T T T T | 87082 | 03 | 400 | 30 | 4. | 00 | | | - | 100 | 68 | 000 | 37 | 100 | 115 | 35 | | | | | 080 | 900 | | > i | 250
145 | 100 | | | 135
135 | 111 | 99 | ς (C) | 120 | 30 | 63 | 4 | | | | | 082 | 10 | 450 | 40
7.7 | 4 |) | | | 245
85 | 31 | 350 | 09 | 375 | 90 | 130 | 49 | | | | | 082 | 14
02 | 250 | 100 | | | | | 86 | 40 | 225 | 100 | 110 | 70 | 115 | 75
100 | | | | | 060 | 01
02 | 72
12
12 | 90 | | | | | | | 17 | 80 | | | 30 | 92 | | | | | 060 | 05 | 175 | - i | 110 | 10 | | | 75 | 10 | | | 70 | 20 | | 7.2 | | | | | 870908
870908
870908 | 03
11
15 | 25
60
150 | 20
15
20 | 35
75
125 | 2 2 2 3
2 2 2 3 | | | 24
52
67 | 7
12
31 | 20
45
75 | 3.50
3.50
3.50 | 27 | 10
25 | 38
64
145 | 30 | | | | | 060 | 01
02 | 175 | | 210 | | | | 85 | | 65 | Н | 80 | 1 | 3 | 20 | | | | species | 7081 | 03 | 250 | | 450 | 25 | | | 56 | 7 | | | 155 | 30 | | | | | | | 870922 | 02 | 700 | 35 | 500 | 2 1 | | | 320 | 10 | 450 | 7 2 | 350 | 10 | 450
750 | 32 | | | | 00000 | 2001 | ř
O | 000 | | OCOT | 0 | | | 0.70 | 0 | 7 | 2 | ` | | ? | ٧
٢ | | | | Species | 8708
8708
8708 | 15 | 15
30 | 100 | 50 | 100 | | | 11 | 100 | 26 | 100 | 25 | 100 | 38
30 | 100
100 | | | | | 708 | 4 8 6 | 100 | 00 | 26
225 | 100 | | | 111 | 100 | 70 | 0 | 111 | 100
100 | 63 | 100 | | | | | 709 | 030 | 125 | 000 | 140 | 100 | | | 95 | 100 | 104 | 100 | 115 | 100 | 140 | 100 | | | | | 870921
870921 | 0000 | 200
40
40 | 0000 | 165
35
28 | 100 | | | 4
28
20
20 | 100
100
100 | 150
30
35 | 100
100
100 | 525
67
45 | 100
100
100 | 125
58
36 | 1000 | | | | | 907
907
908 | 07
03
06 | 40
30
15 | 100 | 32
60 | 100
100 | | | 220 | 100 | 60
25
15 | 100 | 33 | 100 | 130
68
24 | 100
100
100 | | | | | 709 | 08 | 50 0 | 000 | | | | | | | 18 | 0 0 | 25 | 100 | 34 | 100 | 1. | | | | 709 | 7 T C | 70 | 100 | 100 | 100 | | | 80 | 100 | 0 LO | 100 | 250 | 100 | 155 | 100 | C7 | 007 | | | 2007 | 7 P C | 3 6 4 | | 45 | 100 | | | 15 | 100 | 30 | 100 | 30 | 100 | | 100 | | | | | 710 | 01 | 2 | | 29 | 100 | | | 40 | 100 | 3 | > | 30 | 100 | | >
>
H | | | Table 4. (continued) | 0 | pat | | 100 | | | | |-------|--------------|----------------------------------|--|--------------|----------------------------------|------------------------| | 7 sdo | best
est. | | ~ | | | | | 68 | pct | 100 | 100
100
100
100
100
100
100
100
100
100 | 100 | 100
100 | 100 | | sqo | best
est. | 116 | 7 | 135 | 8
8
10 | 1.4 | | . 19 | pct | 100 | 100
100
100
100
30
40
10 | 100 | 100 | | | sqo | best
est. | 22
10
6 | 15
25
168
67
7
115
80
45
1168 | 165 | 13 | | | 51 | pat | 100 | 100
100
100
75
2
3
3
3
4
40
100
100
100
100 | 100 | 100
100
100 | 100 | | sqo | best
est. | 12 | 30
114
120
20
350
350
7
7 | 150 | 8
8
19 | 14 | | 22 | pct | 100 | 100
100
100
100
100
60
60
60 | 100 | 100 | 100
 | sqo | best
est. | 11 | 2
2
4
3
3
9
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 100 | 7 | 13 | | 12 | pct | | 100 | | | | | sqo | best
est. | | 44 | | | | | 5 | pct | 100 | 100
100
90
2
2
45
45
10
10
100 | 100 | 100 | | | sqo | best
est. | 22 | 13
35
20
20
65
65
210
65
12
12
12 | 200 | Ħ | | | 4 | pct | 100 | 100
100
1000
1000
1000
1000
1000
1000 | 100 | 100
100
100 | 100 | | sqo | best
est. | 20 | 30
10
10
10
10
10
10
10
10
10
10
10
10
10 | 225 | 17
20
50 | 35 | | | sight
no. | 06
02
05 | 00000000000000000000000000000000000000 | 90 | 08
01
02 | 00 | | | date | 15
870816
870916
870929 | 18
870812
870812
870812
870813
870813
870824
870824
870825
870825
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870929
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
870826
87 | 26
870921 | 32
870822
870916
870923 | 34
870810
870924 | | | | species | species | species | species | species | Table 4. (continued) | | | | 940 | \
\
\ | 240 | r | Ohe 1 | , | ů
C | 22 | , do | 5.1 | s d c | 67 | sqo | 68 | - Sqo | 70 | | |---------|--|----------------------------|----------------|-------------------|---------------|-------------------|--------------|-----|--------------|-----|---------------|-----|--------------|-------------------|--------------|-----|--------------|-----|--| | | | | SGO | + | SCO | 1 | - 1 | | - 1 | | S I | 7. | t | - | 2 | | | - | | | | date | sight no. | best
est. | pct | best
est. | pct | best
est. | pct | best
est. | pct | best
est. | pot | best
est. | pct | best
est. | pat | best
est. | pat | species | 34
870925
870926
870926 | 09
05
07 | 20 | 100 | 18
8
9 | 100
100
100 | | | 14 | 100 | 16 | 100 | 9 7 | 100
100
100 | 23 | 100 | | | | | | 709 | 0 11 | 105 | | 65 | 55 | | | 42 | 20 | 35 | 70 | 45 | 70 | 128 | 100 | | | | | v | 710 | 14
06 | 40
35 | 20
86 | 21 | 06 | | | | | 0 T | 00 | 12 | 80 | o
n | 00 | | | | | species | 46
870821
870926
870930
871001 | 05
00
05
05
05 | 10 | 100 | വയന | 100
100 | | | 10 | 100 | | | 12 5 | 100 | 3 13 | 100 | | | | | species | 708 | 002 | 10 10 | 100 | į | (
(| | | | | | | | | | 6 | | | | | | 870927
870927
870927 | 10
21
22 | 22 | 100 | v | 100 | | | | | 8 | 100 | | | 010 | 100 | | | | | species | 49
870823
870927 | 02
16 | H 60 + | 100 | , | | | | | | | | | | | | | | | | | 870927
871001 | 17 | r i | 100 | т | 100 | | | | | | | 8 | 100 | | | | | | | species | 70 | 12 | | 100 | w u | 100 | | | | | 'n | 000 | mm | 100 | | | | | | | | 870925
870925
870927 | 04
13 | ოო | 100 | n m | 100 | | | | | m | 100 |) M | 100 | | | e, | 100 | | | species | 61
870826
870918 | 05 | Н | 100 | H | 100 | | | | | - | 100 | | | | | | | | | | 870921
870927
870927 | 09
15
25 | 3 6 | 100 | н | 100 | | | 13 | 100 | Н | 100 | | | Н | 100 | | | | | species | 708 | 04 | ю | 100 | ,
(C) - | 100 | | | | | | | | | | | | | | | | 870919
870919
870923
870923 | 07
01
03 | ਜਜਜ | 100
100
100 | -i | 001 | | | | | 1 | 100 | | | н | 100 | | | | Table 4. (continued) | | | | sqo | 4 | sqo | 5 | obs 12 | obs 22 | obs 2 | 51 | sqo (| 29 | sqo | 89 | sqo | 7.0 | |---------|--|----------------------|--------------|-----|--------------|-------------------|------------------|----------------|--------------|-----|--------------|--------|--------------|---------------|--------------|------| | | date | sight
no. | best
est. | pct | best
est. | pct | best pct
est. | best pct | best
est. | pct | best
est. | pot | best
est. | pct | best
est. | pct | | species | 72
870812
870923 | 13 | 0.0 | 100 | 7 | 100 | | 2 100
1 100 | 2 | 100 | 20 | 100 | | | 2 | 100 | | species | 75
870810 | 01 | 77 | 100 | | | | | . 0 | 100 | | | 7 | 100 | | | | species | 77
870811
870811
870811
870811 | 03
05
11 | 35 | 100 | 13 | 06 | | 06 6 | 20 | 100 | 00 | 100 | 35 | 100 | | | | | 870812
870812
870813
870816 | 000000 | 0 0 | 50 | 50 | 100 | | | | | |)
) | 4 200 | 100 | | | | | 870819
870820
870820 | 00
01
03 | 250 | 65 | 'n | 100 | | | 7 | 100 | | | Ci | 001 | | | | | 870826
870926
870907
870907 | 00
00
01
01 | 25 | 100 | 15 | 1 22 | | | 17 | 12 | 85 | Ŋ | 30 | ထက | | | | | 870908
870912
870917 | 02
01
04 | 10 | 100 | | | | 1 100 | | 100 | | | Ŋ | 100 | | | | | 870922
870923
870923
870926 | 0000
0490 | 15 | 100 | | | | 5 100 | H | 100 | 12 | 100 | 118
846 | 100 | 9 | 100 | | | 871001 | 80 | | | | | | | т | 100 | | | 2 |)
)
H , | | | | species | 78
870808
870812
870812
870815 | 02
09
11
05 | r-1 | 100 | 2 11 | 100
100
100 | | | | | • | 6 | | | | | | | 870816
870816
870816
870908 | 000 | | - (| | 100 | | 1 100 | | | n ⊢ 4 | 100 | | | | | | | 870915
870917
870921 | | H | 100 | - | 100 | | | | | н | 100 | | | | | | | 870921 | | | | 4 | 2 | | | \vdash | 100 | | | | | c | 6 | | | 870922 | 80 | | | | | | | 1 | 100 | | | | | 7 | 00 7 | Table 4. (continued) | | | | sqo | 4 | obs 5 | 5 | obs 12 | obs 22 | obs 51 | Cops 67 | | 89 sqo | ops 70 | |------------|----------------------------------|------------|----------|-----|-------|-----|----------|--------------------------------------|----------|---------------|-----|------------------------|----------| | | date | date sight | best pct | pct | 1. | pct | best pct | best pct best pct best pct est. est. | best pct | best pct est. | | best pct best pct est. | best pct | | species 79 | 79
870809
870922 | 02 | | | | | | | 1 100 | П | 100 | | | | species | 90
870825
870905 | 11
03 | H | 100 | 28 | 100 | | 19 100 | | 35 10 | 100 | 1 100 | | | species | 96
870819
870823 | 02
01 | | | н | 100 | | | 1 100 | _ | | | | | species | 98
870818
870820
870821 | 002 | ਜ਼ਜ | 100 | | | | | 1 100 | | | | | | | 871001
871001 | 03 | Η. | 100 | | | | | 1 100 | | | | | pct best est. 69 sqo pct100 100 100 100 100 86 obs 64 best est. 78 58 105 290 80 40 65 10 60 pct 30 100 60 100 100 71 90 best est. 50 30 60 60 40 35 55 130 $\frac{240}{120}$ 60 200 80 80 pct95 100 100 50 100 15 40 60 50 30 100 100 100 92 obs 56 best est. 125 50 40 120 200 50 75 35 250 100 175 400 175 325 500 200 500 100 100 100 87 98 30 40 2 50 100 75 pct 50 obs 55 best est. $\frac{400}{300}$ 275 325 700 400 500 250 250 40 50 50 80 80 pct 60 100 80 100 100 99 100 40 100 100 96 95 obs 31 best est. 160 50 40 166 340 450 420 140 sight no. 3 871116 871014 871014 871022 871023 871028 871028 871028 871028 871102 871115 871115 871115 8711120 8711120 871120 871123 87123 87123 87123 87123 87123 date species species Table 4. (continued) 75 100 55 10 92 100 100 100
pct69 sqo best est. 26 850 375 140 280 120 240 220 375 150 950 100 60 100 100 100 100 60 sqo best est. 34 950 235 280 30 190 100 40 pct $\frac{100}{100}$ 100 60 35 100 100 100 100 obs 63 best est. 120 150 70 80 8 $\frac{150}{130}$ 20 20 30 118 15 18 60 100 100 60 40 pct100 65 5 100 100 70 $\frac{100}{100}$ 85 75 80 40 25 60 60 best est. 525 400 300 85 175 400 175 200 275 45 175 325 100 100 50 25 pct $\frac{100}{100}$ 100 70 60 65 best est. 60 175 375 200 400 250 75 50 50 50 60 45 275 325 pct 100 60 20 90 100 100 100 100 100 60 sqo best est. 28 890 680 180 110 46 230 400 200 200 1400 20 20 sight no. 02 22 02 02 05 09 13 003 001 001 002 002 003 005 005 005 005 07 09 11 12 03 07 07 08 08 871016 871018 871018 871022 871022 871009 871009 871014 871014 871023 871025 871025 871025 871115 8711128 871128 871128 871128 871128 871119 871120 871120 871010 871010 871010 871011 871011 871012 871012 date species species species species species Table 4. (continued) Table 4. (continued) | | | | | | | | , | | , | (| | | - | | |----------|--|----------------------|-------------------|-------------------|-----------------------|------------|----------------------|-------------------|----------------------|-------------------|----------------|--------|------------------|-------------------| | | | | sqo | 31 | sqo | 55 | sqo | 56 | sqo | 63 | sgo | 64
 | sgo | 09 | | | date | sight no. | best
est. | pct | | รถคุณจัด | 13 | | | | | | | | | | | | | | | | 871
871
871 | 02
05
03 | 24
15
40 | 100
100
100 | 30
20
50 | 100 | 40
25
40 | 100
100
100 | 16
12
20 | 100
100
100 | 18
30 | 100 | 27
21
35 | 100
100
100 | | | 717 | 04
12
15 | 200 | 100 | 125
75 | 00 | 45 | 100 | | 00 | 78 | 100 | 45 | 100 | | | 717 | 01
06
12 | ω_{Γ} | 100 | 45 | 100 | 30 | 100 | 30
18 | 100 | 24 | 0 | C) | 0 | | | 717 | 14
04
10 | 12 | 100 | 90
45 | 100
100 | 95
20
50
50 | 100
100 | 60
40
25 | 100
100
100 | 14 | 100 | Q | 100 | | | 717 | 000 | 30 | 100 | 45 | 100 | 30 | 0 | 20 | 100 | 36
36
95 | 100 | 60
28
50 | 100 | | | 7777 | 00000 | | 100 | 15
45
70
115 | 1000 | 10
28
55
80 | 1000 | 30
44
45
60 | 1000 | 92 235 | 00 | 110
105 | 00 | | | 8/1028
871028
871028
871028
871028 | 10
13
21
24 | 36
32
75 | 100
100
100 | 60
40
70
50 | 000 | 4 wow: | 1000 | | 000 | 60
40
92 | 100 | 80
80 | 100
100
100 | | | 71 | 01
02 | 70 | 100 | 110 | 0 | | 100 | 09 | 0 | 62 | 100 | 140 | 100 | | | 71 | 01
02
04 | | 100 | 18 | 100 | 25
25
25 | 100
100
100 | 28 | 100 | 20 | 100 | 27 | 000 | | | 77 | 01
05
06 | 35
30 | 1000 | | | | | 20 | 100 | 4 . | 100 | 0 4 0 6
4 0 6 | 100 | | | 777 | 0000 | | 100 | 09 | 100 | 55
75 | 100 | 30 | 100 | 143
56 | 100 | 80 | 00 | | | | 080 | 65 | 100 | 40
70
70 | \circ | 75 | 100 | 28 | 100 | 82 | 100 | 75 | 100 | | | 727 | 000 | 35 | 100 | 20 | 0 | 4 5 | 100 | 30 | 0 | 66
28
24 | 100 | 120
45
38 | 100 | | | 2222 | 00000 | | 100 | 35
25
30 | 1000 | 20
20
15
18 | 100 | 20
12
8
9 | 1000 | 16
22 | 100 | | 100 | | | 777 | 01001 | 6 | 100 | 00 | > |)
)
(| 100 | 7 8 | O | 16 | 100 | 12 | 100 | | | 7 | TO | | | | | C.3 | 007 | 0 | | | | | | Table 4. (continued) | 69 | pat | 100 | 100 | 0001 | 100 | | | 60
100
60
100 | | | 100 | 100 | , | 100 | 100 | |-----|--------------|------------------------|--|---|----------------------------|----------------------------------|------------------|--------------------------------------|----------------------------|------------------------------|----------------------------|------------------------|------------------|------------------|-------------------| | sqo | best
est. | 80
55 | 35 | 3000
3000
3000
3000
3000
3000
3000
300 | | | | 30
16
32
75 | | | 32 | 21 | • | 12 | 112 | | 64 | pct | 100 | 100 | 100 | 100 | | 100 | 100
60
100 | 30 | | 100 | 100 | | 100 | 100 | | sqo | best
est. | 33 | 125 | 18
26
9 | 13 | | 2 | 18
40
70 | 18 | | 8
21 | 18 | | 15 | 7 | | 63 | pct | 100 | 100 | 100 | 100 | 100 | | 100 | | 38 |)
(| | 100 | 100 | 100 | | sqo | best
est. | 23 | 45 | , w | 20 | 6 13 | | 18 | | 17 | } | | 71 | α | 12 | | 56 | pot | 100 | 100 | 100 | 100 | 100 | 50 | | | 47
100
3 |) | 50 | 100 | 100 | 100 | | sqo | best
est. | 60 | 60 | , η | 22 | 7 | 25 | ł | | 20
13 | | 25 | 8
20 | C | 12 | | 55 | pct | 100 | 100 | 100 | 100 | 100 | 100 | | 100 | 7 88 | 100 | | 100 | 100 | 100 | | sqo | best
est. | 50 | 12
45 | Ŋ | 12 | 158 | 0 | | 56 | 200 | 9 | | 10 | 1.0 | 18 | | 31 | pct | 100 | 100 | 1000 | 100 | 100 | 20 | 80
100
80
100 | 40
70 | | 100
100 | 100 | 6 | 100 | 100 | | sqo | best
est. | 120
60 | 160 | 12
12
15
16 | 13 | 16 | 7 | 30
30
30
30
30 | 13
40 | | 10 | 17 | (| 18 | 7 | | | sight
no. | 04
05 | 16
03
11 | 06
02
04
04 | 02
03
01 | 01
02
10 | 90 | 01
03
07
08 | 14
20 | 00
01
01 | 05
01
03 | 02 | 80
60
60 | 000 | 001 | | | date | 13
871205
871205 | 15
871009
871013
871018
871027 | 871103
871103
871117
871117 | 871122
871122
871126 | 18
871009
871009
871009 | 871011
871012 | 871014
871016
871017
871017 | 871017
871018
871018 | $871021 \\ 871023 \\ 871110$ | 871111
871127
871202 | 21
871012
871012 | 871021
871021 | 871024
871114 | 871117
8711130 | | | | species | species | | | species | | | | | | species | | | | Table 4. (continued) | | | | ,
0 | 31 | oha | 55 | ohs | 56 | sqo | 63 | sqo | 64 | sqo | 69 | |---------|--|--------------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------|---------------|-------------------|-----------------|-------------------|-----------------|--------------------------| | | date | sight
no. | 1 | pct | best
est. | pot | 1 | | 1 | pct | best
est. | pat | best
est. | pct | | species | 32
871017
871021
871101 | 01
06
03 | 46 | 100 | 30
25
16 | 100
100
100 | 25
25
25 | 100
100
100 | 20
25
8 | 100
100
100 | 20 | 100 | 28 | 100 | | species | 33
871025
871120 | 02 | | | 9 | 100 | 25 | 100 | & | 100 | 11 | 100 | | | | species | 34
871017
871017
871017 | 000- | 12
55
11 | 100 | | | | | | | 14
40
12 | 100
40
100 | 16
32
9 | 100
40
100 | | | 8/101/
871021
871030
871115
871115 | 000
000
000
000 | 22
9
11 | 100
100
100 | 15 | 100 | 20 | 48 | 17 | 56 | 17
8
8 | 100
100
100 | 13
10 | 100
100
100 | | species | 37
871014
871018
871110
871115 | 07
03
04
02 | 5
4 4
12 | 100
100
100 | N O | 100 | 4 & | 100 | 4 O U | 100
100
100 | 4 6 | 100 | N 4 N Q | 100
100
100
100 | | species | 46
871009
871011
871014
871016
871016 | 112
00
10
16 | 28
55
40 | 100
20
30 | 25 | 100 | 11 | 100 | 13 | 100 | 17
4
18 | 100
100
70 | 30
30
5 | 100
40
100 | | | 871028
871028
871029
871103
871103 | | 20 | 100 | 80 | 13 | 120 | ω | 35 | 29 | 13
13
105 | 100
100
100 | 14
11
189 | 100 | | | 871115
871125
871202 | | 6 | 100 | | | H | 100 | М | 100 | 11 | 100 | 11 | 100 | | species | 48
871027
871121 | 04 | 73 | 100 | Ħ | 100 | + | 100 | ∺ | 100 | | | | | | species | 49
871029
871110
871111 | 07
02
03 | 2 | 100 | | | | | | | ਜ | 100 | Ħ | 100 | Table 4. (continued) | | | | sqo | 31 | sqo | 55 | sqo | 56 | sqo | 63 | sqo | 64 | sqo | 69 | |---------|--|--------------------------------|--------------|-------------------|--------------|-----|--------------|-----|--------------|-----|--------------|-------|--------------|-----| | | date | sight no. | best
est. | pct | | species | 49
871128
871129
871130 | 04
03
05 | | 100 | | | e e | 100 | T | 100 | | | | | | species | 51
871010
871010
871011 | 8 6 6 6 6 | w w | 100 | 7 | 100 | S 3 | 100 | . m . c | 100 | r | 0 | | | | | 871017
871027
871027
871028 | 0.0
10
0.0
0.0
0.0 | Н | 100 | 2 4 | 100 | . 2 | 100 | | | 'n | 0 O T | | | | | 871029
871103
871113
871204 | 00
00
00
00
00 | m 01 01 | 100
100
100 | | | 2 | 100 | | | | | | | | species | 61
871018
871022
871029 | 15
07
05 | 1.3 | 100 | | | Ϋ́ | 100 | | | | | | | | species | 70
871009
871009 | 08 | | | ПН | 100 | | | | | | | | | | | 871011
871012
871012 | 1000 | - | 100 | i — | 100 | | 100 | | 100 | | | | | | | 871020 | 000 | -i |) (| | | | | | | Н | 100 | | | | | 871111 | 787 | ⊣ - | T 00 | | | | | | | Т | 100 | | | | | 871120 | * 8 9 | 4 | 00 7 | τ- | 5 | ⊢ 1 | 100 | | | | | | | | | 871201
871203
871204
871204 | 0000
0424
034 | 7847 | 100
100
100 | 4 | 9 | | | 1 | 100 | 2 | 100 | | | | species | 72
871111 | .01 | 2 | 100 | 2 | 100 | 2 | 100 | 2 | 100 | | | | | | species | 75
871018
871024
871205
871205 | 03
02
06 | нвнч | 100
100
100 | Н | 100 | Ħ | 100 | П | 100 | 7 | 100 | | 100 | Table 4. (continued) | 20 100 1 100 1 100 2 100 1 100 3 100 3 100 4 100 3 100 1 1 100
1 1 100 1 | | : | sqo | 31 | - 1 | 55 | 70 | 1 1 | os 63 | کہ ا | ا و | 4 | sqo | | |--|---------|--------------|--------------|-----|--------------|-------|--------------|-----|-------|------|-----|-----|--------------|-----| | 04 20 100 30 100 15 10 30 100 10 3 100 3 100 1 100 10 10 10 1 100 10 10 10 1 100 10 10 10 1 100 10 10 10 1 100 10 10 10 1 100 10 10 1 100 1 10 10 1 100 1 10 10 1 100 1 10 10 1 100 1 10 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 10 1< | - 1 | sight
no. | best
est. | pct | best
est. | pct | best
est. | pct | u | | 1 | pat | best
est. | pct | | 1 100 15 100 30 10 | 0.0 | | 00 | 100 | | | Н | 100 | | | | | | | | 10 1 100 1 100 1 100 1 100 1 3 100 1 1 | 00 | | 9 |) (| 15 | 100 | 30 | 100 | | | | | 77 | 100 | | 12 100 13 100 14 100 15 1 100 16 1 100 17 1 100 18 1 100 19 1 100
19 1 100 | 0 24 | | H | 100 | | | | | | | | 100 | ω | 100 | | 3 100 17 4 100 18 19 10 10 10 10 10 10 10 10 10 | 44 | | Н | 100 | | | | | | | | | 12 | 100 | | 17 | 1 - 8 | | | | m | 100 | | | | | H (| 100 |]
 | | | 0.7
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7 | 855 | | | | 4 | 100 | n | 100 | | | 77 | 001 | 1 | , | | 04 | 22 | | | | 10 | | | | | | | | 7 | 100 | | 14 100 15 100 1 1 100 | ದು ದು ದ | | | | H | | | | | | | | 3 | 100 | | 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 3 50 80 | | | | 4 | | | | | | 20 | 0 | | | | 15 100 1 100 1 100 20 23 23 23 01 03 01 03 04 07 08 09 09 09 09 09 09 09 09 09 09 09 09 09 | ထ္ထ | | | | | | 9 | 100 | | | | | | 40 | | 18 15 100 3 100 15 100 3 100 15 100 1 | 8 8 | | | | 121 | 100 | H | 100 | | | | | | | | 23
03
03
01
03
04
05
04
05
06
07
08
09
09
09
09
09
09
09
09
09
09 | ထ္ ထ | | | | CT | 007 | 3 | 100 | | | | | , | 000 | | 03 01 01 02 03 04 05 05 06 07 08 08 11 100 07 08 08 11 100 09 09 09 09 09 09 09 09 09 09 09 09 0 | ထထ | | | | | | | | 5 | 00 | | | ٠ ١ | TOO | | 03 06 07 07 08 08 01 03 03 03 04 04 04 05 04 05 06 07 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 | 440 | | | | | | | | | | | 100 | 1 07 | 100 | | 04
07
08
01
03
03
03
03
03
03
04
04
05
04
04
05
06
07
08
09
09
09
09
09
09
09
09
09
09 | 92 | | | | | | | | . 2 | 00 | | | ∞ (| 100 | | 08
01
03
03
03
07
07
08
09
03
04
400
400
04
05
400
400
06
08
100
6 100
6 | 크드 | | | | | | | | | | 9 | 100 | ω . | 100 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 140 | | | | | | 1 5 | 100 | | | | - | | | | 07 1 100 1 100 0 1 100 0 0 0 0 0 0 0 0 0 | W N | | 30 | 100 | | | | | | | 7 | 100 | | | | 03
04
05
05
01
10
10
10
02
50
30
6
10
6
10
6
6
8
8
100
60
8
100
60
8
100
60
8
100
60
8
100
60
8
100
60
8
100
60
8
100
60
8
100
8
100
100
100
100
100
1 | 50 | | | | H R | 100 | н | 100 | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2 2 2 5 | | 400 | 40 | , |)
 | 1 9 | 100 | | | | 100 | 09 | ω | | | 2000 | | 10 | 100 | | | , | 100 | | | 92 | 20 | 12 | 0 | Table 4. (continued) | | | | obs 31 | 31 | sqo | 55 | obs 56 | 56 | sqo | 63 | sqo | 64 | sqo | 69 | |---------|--|----------------------|--------------|-----|--------------|-----|--------------|-----|----------------------|-----|--------------|-----|--------------|-----| | | date | sight no. | best
est. | pct | | species | 77 | | | | | | | | | | | | | | | 4 | 871120 | | ٢ | 0 | 1 | 100 | | | | | | | | | | | 871125
871125
871129 | 010 | ⊣ | 001 | HК | 100 | Н | 100 | H | 100 | | | | | | | 871130
871201 | | 7 | 100 | | | | | ω | 100 | Ċ | 9 | | | | | 871204
871204
871204 | | | | 1.0 | 100 | \vdash | 100 | | | 7 | 001 | | | | species | 78
871010
871017 | | | | н | 100 | H | 100 | | | 7 | 100 | | | | | 871017
871017
871018 | | | | 2 -1 | 100 | | | | | n | 100 | | | | | 871021
871027
871028 | | 40 | 100 | 7 | 100 | | | | | 16 | 100 | 30 | 100 | | | 871109
871111
871122
871126 | 04
06
02
02 | 4 | 100 | ન ન | 100 | Ħ | 100 | H | 100 | ·lO | 100 | 80 | 100 | | species | 90
871009 | 07 | 15 | 100 | | | | | | | | | 2 | 100 | | species | 96
871009
871012 | | | | | | н | 100 | | | 73 | 100 | | | | | 871013
871029 | 04
03 | | | | | | | Н | 100 | | | H | 100 | | species | 98
871018
871109
871125
871203 | 05
03
01 | | | | | ਜਜ | 100 | r - 1 r-1 | 100 | | | | | Summary of marine mammal sightings encountered in the eastern tropical Pacific during August 8 through December 10, 1987. Table 5. | • | ı | ı | | | | | | |
--|-----------------|---------------------------------------|---------------------------|-------|-------------------------------------|--|-----------------------|-------------| | species name (scientific name) | species
code | species sightings
total pure mixed | pecies sigh
total pure | tings | estir
low /(n) | estimated-mean-school-size
(n) high /(n) best /(n | school-siz
best /(| ize
/(n) | | | | | | | | | | | | OFFSHORE SPOTTED DOLPHIN | 2 | 105 | 51 | 54 | 78.58(105) | 78.58(105) 122.92(104) |) 97.28(104) | 04) | | SPINNER DOLPHIN SPINNATA) | 3 | S | m | 4 | 59.54(5) | 118.35(4) |) 90.05(| 4) | | COMMON CALLES DOUGLES (COMMON CALLES OF THE PART TH | 5 | 26 | 26 | 0 | 169.38(26) 262.71(24) 218.21(24) | 262.71(24 |) 218.21(| 24) | | (DELFITING DELFITS) COASTAL SOUTED DOLIPHIN | 9 | 9 | 9 | 0 | 47.20(5) | 72.60(5) | 54.80(| 2) | | EASTERN SPINNER DOLLPHIN | 10 | 51 | 13 | 38 | 91.18(51) | 51) 131.56(50) 109.09(|) 109.09(| 50) | | WHITEBELLY SPINNER DOLPHIN | 11 | 10 | H | 6 | 115.89(10) | 174.50(| 10) 141.95(| 10) | | STRIPED BOLDHIA LONGINGS) | 13 | 88 | 88 | 0 | 41.14(88) | 59.72(87) | 49.02(| 87) | | ROUGH-COOTHED DOLPHIN | 15 | 16 | 16 | 0 | 14.94(16) | 19.87(16) | 17.00(| 16) | | STENO BREDANENSIS) BOTTLENOSED DOLPHIN | 18 | 58 | 33 | 25 | 15.22(55) | 25.02(48) |) 20.61(| 51) | | RISSO'S DOLPHING OF THE REST O | 21 | 27 | 16 | 11 | 9.13(26) | 13.76(26) | 10.66 | 27) | | PACIFIC WHITE-SIDED DOLPHIN | 22 | 7 | 7 | 0 | 7.50(2) | 10.00(2) | 8.00(| 2) | | (LAGENORATINCAROS OBLIGOLDENS)
FRASER'S DOLPHILE HOGETY | 26 | Н | Н | 0 | 138.00(1) | 194.00(1) |) 162.00(| 1) | | UNIDENTIFIED DOLPHIN | 77 | 123 | 110 | 13 | 8.89(122) | 14.91(91) | 10.80(| 91) | | SPOTTED DOLPHIN | 06 | 4 | 4 | 0 | 11.00(4) | 14.67(3) | 12.33(| 3) | | (Siewelle Gireworle) totals | | 522 | 368 | | | | | | Table 5. (continued) | species name (scientific name) | species
code | | es sig
1 pure | species sightings
total pure mixed | est
low /(n) | ima
) | estimated-mean-school-siz
(n) high/(n) best/(! | n-scl
n) | nool-size
best /(n) | Ze (n) | |--|-----------------|--------------|------------------|---------------------------------------|-----------------|----------|---|-------------|------------------------|--------| | | | | | | | | | | | | | PYGMY KILLER WHALE | 32 | 9 | 9 | 0 | 16.83(| (9 | 26.00(| (9 | 20.33(| (9 | | FALSE KILLER WHALE | 33 | Ж | က | 0 | 9.00.6 | 3) | 12.67(| 3) | 10.67(| 3) | | | 34 | 25 | 15 | 10 | 10.89(25) | () | 16.90(| 22) | 13.65(| 22) | | KILLER WHALE | 37 | 9 | 9 | 0 | 5.33(| (9 | 6.50(| (9 | 5.67(| (9 | | SPERM WHALE | 46 | 18 | 14 | 4 | 9.02(18) | 3) | 11.30(| 18) | 9.76(| 18) | | (PHYSETEK MACKOCEPHALUS) DWARF SPERM WHALE | 48 | ω | 80 | 0 | 1.87(| 8) | 2.37(| 8) | 2.37(| 8) | | (KOGIA SIMUS) BEAKED WHALE | 49 | 14 | 14 | 0 | 1.57(14) | 4) | 2.14(| 14) | 1.64(| 14) | | SOUTHERN BOTTLENOSED WHALE | 50 | Ţ | ᆏ | 0 | 1.00(| 1) | 2.00(| 1) | 1.00(| 1) | | (HYPEROODON PLANIFRONS) UNID, MESOPLODONT | 51 | 17 | 17 | 0 | 2.29(17) | () | 2.65(| 17) | 2.35(| 17) | | CUVIER'S BEAKED WHALE | 61 | ω | ఐ | 0 | 1.62(| 8) | 1.75(| 8 | 1.62(| 8) | | γ. | 70 | 28 | 28 | 0 | 1.14(28) | 3) | 1.30(| 27) | 1.15(| 27) | | (BALAENOPTEKA SP.) BRYDE'S WHALE | 72 | ю | ю | 0 | 2.00(| 3) | 2.00(| 3) | 2.00(| 3) | | BLUE WHALL | 75 | 5 | 5 | 0 | 1.20(| 5) | 1.60(| 2) | 1.40(| 5) | | | 92 | | 7 | 0 | 1.00(| 1) | 1.00(| 1) | 1.00(| 1) | | (MEGARTERA NOVAEANGLIAE)
UNIDENTIFIED SMALL WHALE | 78 | 34 | 34 | 0 | 2.29(34 | 34) | 3.16(| 31) | 2.77(| 31) | | UNIDENTIFIED LARGE WHALE | 79 | 4 | 4 | 0 | 1.00(| 4) | 1.00(| 4) | 1.00(| 4) | | UNIDENTIFIED CETACEAN | 96 | 89 | ∞, | 0 | 1.37(| 8) | 1.57(| 7) | 1.29(| 7) | | UNIDENTIFIED WHALE | 86 | 12 | 12 | 0 | 1.00(1 | 12) | 1.00(| 11) | 1.00(| 11) | | | totals | 201 | 187 | | | | | | | | Summary of distance searched, large dolphin schools detected, and rates of encountering dolphins by observers aboard the Jordan in the eastern tropical Pacific during August 8 through December 10, 1987. Table 6. | | Distance
Searched
(km) | Percent
km
Searched | Number
Schools
Detected | Percent
All Schools
Detected | Detection
Rate (Schools/
1000 km) | S.E.
Detection
Rate | Number ¹
Days
Searched | |--|--|----------------------------------|----------------------------------|------------------------------------|--|--------------------------------------|---| | All Data
Inshore
Middle
West
South | 13260
8270
4789
37
164 | 100
62
36
41 | 263
195
68
0 | 100
74
26
0 | 19.83
23.58
14.20
0 | 2.18
3.08
2.35
0 | 95
61
34
0 | | Sea State Conditions
Calm
Rough | 2711
10549 | 20
80 | 108
155 | 41
59 | 39.84
14.69 | 5.63 | 51
90 | | Visibility Conditions
Good
Poor | 11397
1863 | 86 | 234 | 89 | 20.53
15.57 | 2.34 | 94 | | Observers Legs 1 and 2 4 5 22 51 67 68 | 3212
3134
3140
3176
3143
3205 | 24
24
24
24 | 38
21
9
18
19
23 | 14
8
7
7 | 11.83
6.70
2.87
5.67
6.05 | 2.44
1.63
0.95
1.80
1.40 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | Observer
31
55
56
63
64 | 3364
3538
3532
3540
3375 | 25
27
27
27
25
25 | 25
31
22
17
17
23 | 10
12
8
6
9 | 7.43
8.76
6.23
4.80
5.04
6.84 | 1.75
1.69
1.48
1.43
2.45 | 22 22 22 22 | | Teams ²
Legs 1 and 2
Team 1
Team 2 | 3206 ³
3128 | 24 | 78 | 30 | 24.33
15.99 | 4.29
2.96 | 44 | Table 6. (continued) | Teams ² Legs 3 and 4 Team 3 Team 3 Team 4 Team 4 3.14 51 Team 4 51 | | Distance
Searched
(km) | Percent
km
Searched | Number
Schools
Detected | Percent
All Schools
Detected | Detection
Rate (Schools/
1000 km) | S.E.
Detection
Rate | Number ¹
Days
Searched | |---|--|------------------------------|---------------------------|-------------------------------|------------------------------------|---|---------------------------|---| | | Teams ²
Legs 3 and 4
Team 3
Team 4 | 3359
3527 | 25 | 65 | 25
26 | 19.35
19.28 | 3.44
3.16 | 51 | 1bay included in tally of searching effort for variable occurred during any part of the day. ²Team 1 members were observers 4,51,68; Team 2 members were observers 5,22,67; Team 3 members were observers 31,64,69; and Team 4 members were observers 55,56,63. $^340 \mathrm{km}$ of trackline was searched when either both or neither of the team leaders were on duty and is not used for team analysis. Tracklines surveyed by the NOAA Ship David Starr Jordan from August 8 through December 10, 1987, in the eastern tropical August 8 Pacific. Figure 1. 1 = COURSE CHANGE 2 = SPEED CHANGE 4 = EFFORT TERMINATED 5 = LEG ENDS TO RECORD POSITION IN FOLLOWING LEG POSITION IN FOLLOWING LEG 8 = LEG ENDS DUE TO CHANGE IN ENVIRONMENTAL CONDITIONS NO FOG OR RAIN = 1 FOG = 2 RAIN = 3 FOG AND RAIN = 4 ENDING CODES FOG/RAIN CODES CODE END FEG REC. POSITION: ONE OR MORE PER SERIES | DBSERVER POSITION 53 RIGHT BIND. LEFT BIND. ш|≥ LONGITUDE 43 z s RESEARCH SHIP MARINE MAMMAL DAILY EFFORT RECORD LATITUDE 38 VESSEL SPEED KTS& 10ths 32 COMPASS COURSE 32 END OF LEG TIME 88 VERT 56 HORZ 2 BEAU # RAIN S START OF LEG SURFACE TEMP. °F &
10ths 181 YEAR MONTH DAY TIME LEG # CRUISE า≃ SERIES # Research ship marine mammal daily effort record. 2 Figure Figure 3. Research ship marine mammal sighting record. Figure 4. Vertical and horizontal sun position categories. | DATE SIGHT | | SKETCH FEATURES OF A | NIMALS SIGHTED | |--|----------------------------------|------------------------------------|----------------| | CRUISE DATE SIGHT SIGHT # | SERIES LEG OBS.
CODE | | | | 1 4 6 8 10 | 12 14 16 | | | | 1 4 6 8 10 | 12 14 10 | | | | SIGHTING SUMMARY |] | | | | LIST ALL DIAGNOSTIC FEATURES OBSTINCTUDING ESTIMATED BODY LENGTH | SERVED
TH) | · | | | | | | | | | | | | | 1 | | | | BEHAVIOR (DESCRIBE AGGREGATION) | ON, MOVEMENT, BOW AND STE | RN RIDING, BLOWS, ETC.) | ASSOCIATED ANIMALS – (INCLUDE N | NUMBER AND SPECIES OF BIRDS | S) | | | | | PHOTOS: | BOLL 4 | | | | - FRO105: | ROLL # | | | | | FRAME(S): # | | TOTAL | ENVIR. COND. | CLOSEST | | | TIME OF
OBSERVATION | (RAIN, OVERCAST,
FOG, CHOPPY) | DISTANCE OF OBSERVATION | | | AMT, OF TIME | TAGS | METHOD OF | | | AT CLOSEST
DISTANCE | ASSOCIATED WITH SIGHTING | OBSERVATION
(EYE, 7x, 10x, 25x) | · | Figure 5. Research ship marine mammal sighting record continuation sheet. (+), coastal (o) and unidentified (∇) spotted dolphins from aboard the NOAA Ship David Starr Jordan from through December 10, 1987, in the eastern tropical detected August 8 Pacific. Offshore Figure 6. (∇) spinner Starr Jordan the eastern Eastern (+), whitebelly (o) and unidentified dolphins detected from aboard the NOAA Ship David from August 8 through December 10, 1987, in tropical Pacific. Figure 7. Common dolphins (+) detected from aboard the NOAA Ship <u>David</u> <u>Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 8. Striped dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 9. David Starr Jordan from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 10. Risso's dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 11. Rough-toothed dolphins (+) detected from aboard the NOAA Ship David Starr Jordan from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 12. Pilot whales (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 13. Sperm (+) and dwarf sperm (o) whales detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 14. (*) whales detected from aboard the NOAA Ship <u>David Starr</u> Jordan from August 8 through December 10, 1987, in the eastern and humpback Bryde's (o), blue (∇) aboard the NOAA Ship Unidentified rorquals tropical Pacific. Figure 15. (▽) the 10, NOAA Ship <u>David Starr Jordan</u> from August 8 through December 1987, in the eastern tropical Pacific. Unidentified beaked (+), Cuvier's beaked (0), mesoplodon and southern bottlenose (0) whales detected from aboard Unidentified beaked (+), Figure 16. in the eastern tropical Killer (+) and false killer (o) whales, Fraser's dolphins pygmy killer (*) whales and Pacific white-sided dolphins detected from aboard the NOAA Ship <u>David Starr Jordan</u> through December 10, pygmy killer detected from August 8 Pacific. Figure 17. Unidentified dolphins (+) detected from aboard the NOAA Ship <u>David Starr Jordan</u> from August 8 through December 10, 1987, in the eastern tropical Pacific. Figure 18. in the eastern tropical 0 and unidentified cetaceans David Starr Jordan whales unidentified through December 10, 1987, detected from aboard the NOAA unidentified large whales (▽) small whales Unidentified August 8 Pacific. Figure 19. ## RECENT TECHNICAL MEMORANDUMS Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost \$4.50. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Center are listed below: - NOAA-TM-NMFS-SWFC- 107 The Hawaiian monk seal and green turtle on Pearl and Hermes Reef, 1986. R.G. FORSYTH, D.J. ALCORN, T. GERRODETTE and W.G. GILMARTIN (April 1988) - 108 A review of California entangling net fisheries, 1981-1986. S.F. HERRICK, JR. and D. HANAN (June 1988) - 109 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1972. B.Y. SUMIDA, R.L. CHARTER, H.G. MOSER and D.L. SNOW (June 1988) - 110 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1975. D.A. AMBROSE, R.L. CHARTER, H.G. MOSER and B.S. EARHART (June 1988) - 111 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1978. E.M. SANDKNOP, R.L. CHARTER, H.G. MOSER, C.A. MEYER and A.E. HAYS (June 1988) - 112 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1981. D.A. AMBROSE, R.L. CHARTER, H.G. MOSER and B.S. EARHART (June 1988) - 113 Depth distributions, growth, and mortality of deep slope fishes from the Mariana Archipelago. S.V. RALSTON and H.A. WILLIAMS (June 1988) - 114 Report of ecosystem studies conducted during the 1987 eastern tropical Pacific dolphin survey on the research vessel McArthur. V.G. THAYER, S.B. REILLY, P.C. FIEDLER, C.W. OLIVER and D.W. BEHRINGER (June 1988) - 115 Report of ecosystem studies conducted during the 1987 eastern tropical Pacific dolphin survey on the research vessel David Starr Jordan. V.G. THAYER, S.B. REILLY, P.C. FIEDLER, R.L. PITMAN, G.G. THOMAS and D.W. BEHRINGER (June 1988) - 116 Report of a marine mammal survey of the eastern tropical Pacific aboard the research vessel McArthur. July 30-December 10, 1987. R.S. HOLT and A. JACKSON (July 1988)